ZYNQ 对block design 进行 upgrade ip

ZYNQ upgrade ip

背景

版型更改,block design 的ip出现红色锁定,report ip 提示需要“retarget”,但各种尝试包扩recustoms、右键ip “upgrade ip”都不行或者报错。

方法

report ip后,出现的IP Status 最下方有个“Upgrade Selected”,点击就行。。。
示意图

方法2

如果直接升级选项为灰色,则可能需要更新ip 库,路径"Settings > IP > Repository".
①一般默认库为"工程目录/工程.srcs/sources_1/ip"
②对于某些自定义ip,还需要添加"工程目录/工程.ipdef"
在这里插入图片描述

<think>好的,我现在需要解决用户遇到的PYNQ库导入allocate函数时的ImportError问题。用户提到错误信息是“cannot import name 'allocate' from 'pynq'”,我需要先理解这个错误的原因,然后找到解决方案。 首先,我应该回忆一下PYNQ是什么。PYNQ是一个基于Xilinx Zynq SoC的开发框架,允许使用Python进行硬件编程。其中,allocate函数可能用于分配内存或硬件资源,比如在FPGA上分配缓冲区。如果用户无法导入这个函数,可能的原因有几个: 1. **版本问题**:用户安装的PYNQ版本可能过旧,不支持allocate函数,或者新版本中该函数已被弃用或移动到其他模块。 2. **安装问题**:可能PYNQ没有正确安装,或者安装过程中出现部分文件缺失。 3. **环境配置**:用户的环境变量或路径设置不正确,导致Python无法找到正确的模块。 4. **依赖缺失**:缺少某些依赖库,导致PYNQ的部分功能无法正常加载。 接下来,我需要参考用户提供的引用内容,特别是引用[4],其中提到类似的问题,用户尝试从pynq导入xlnk时出现错误,并且代码中使用了allocate函数。这可能说明在较新的PYNQ版本中,某些模块或函数的位置发生了变化。例如,allocate可能不再直接从pynq导入,而是需要从pynq的某个子模块(如pynq.lib或pynq.buffer)中导入。 接下来,我需要验证这些可能性。首先检查PYNQ的官方文档或更新日志,确认allocate函数的位置是否有变化。例如,可能现在需要使用pynq.allocate或者pynq.lib.dma.allocate。如果文档中有说明,那么用户需要调整导入语句。 另外,安装问题也是一个常见原因。用户可能使用pip安装了pynq,但版本不对,或者使用了虚拟环境但未正确激活。建议用户检查安装的版本,并尝试升级到最新版本,或者安装特定版本。 此外,环境配置问题,比如PYNQ需要特定的硬件或驱动支持,用户可能在普通PC上尝试运行,而PYNQ需要运行在支持的Zynq设备上。这也可能导致某些函数无法导入,因为底层硬件依赖未满足。 根据引用[4]中的代码示例,用户可能在使用旧版教程或代码,而新版的PYNQ已经更改了API。例如,xlnk模块可能已被弃用,取而代之的是新的内存分配方法。因此,用户需要更新代码以适应新版PYNQ的API。 最后,如果用户的环境正确,版本也正确,但问题仍然存在,可能需要检查依赖库是否完整,或者是否有权限问题导致某些模块无法加载。 总结可能的解决步骤: 1. 检查PYNQ版本,更新到最新或兼容版本。 2. 确认导入语句是否正确,是否应该从子模块导入allocate。 3. 确保运行环境正确,比如在支持的硬件设备上运行。 4. 查看官方文档或社区讨论,寻找类似问题的解决方案。 5. 重新安装PYNQ,确保所有依赖项正确安装。 现在需要将这些思路整理成结构化的解决方案,逐步指导用户解决问题,并确保回答准确可靠。</think>### 逐步解决方案:解决PYNQ库导入`allocate`函数的ImportError #### 1. 验证PYNQ版本兼容性 - **问题原因**:旧版PYNQ(如v2.6之前)可能将`allocate`函数放在`pynq.xlnk`模块中,而新版可能调整了模块结构[^4]。 - **操作步骤**: 1. 查看当前PYNQ版本: ```bash pip show pynq ``` 2. 若版本低于v2.6,尝试升级: ```bash pip install --upgrade pynq ``` #### 2. 修正导入语句 - **问题原因**:新版PYNQ可能将内存分配函数迁移至`pynq.lib`或`pynq.buffer`模块。 - **操作步骤**: - 旧版导入方式(已废弃): ```python from pynq import allocate # 可能引发ImportError ``` - 调整为以下方式之一: ```python from pynq.lib.xlnk import Xlnk # 适用旧版Zynq设备 xlnk = Xlnk() data_in = xlnk.cma_array(shape=(4,416,416), dtype=np.float16) ``` 或(新版推荐): ```python from pynq import Overlay, allocate overlay = Overlay("design.bit") # 需加载正确的硬件设计文件 data_in = allocate(shape=(4,416,416), dtype=np.float16) ``` #### 3. 确认硬件环境 - **问题原因**:PYNQ需运行在支持Zynq/UltraScale+的设备(如PYNQ-Z1/Z2板)上,普通PC环境无法调用硬件相关函数。 - **操作步骤**: 1. 检查设备是否为Xilinx开发板。 2. 确保已正确烧写PYNQ镜像(如SD卡启动)。 #### 4. 检查依赖与安装完整性 - **问题原因**:部分依赖缺失或安装中断可能导致函数无法导入。 - **操作步骤**: 1. 完全卸载后重新安装PYNQ: ```bash pip uninstall pynq -y pip install pynq --no-cache-dir ``` 2. 安装必要依赖库: ```bash sudo apt install libopenblas-dev libatlas-base-dev ``` #### 5. 参考官方文档与社区 - 查阅[PYNQ官方文档](http://pynq.readthedocs.io)确认API变更: - 内存分配函数的使用示例(如`pynq.allocate`需配合Overlay对象)。 - 硬件设计文件(.bit/.hwh)是否与代码匹配。 --- ### 相关问题 1. **如何验证PYNQ开发板与计算机的连接是否正常?** (通过Jupyter Notebook访问板载IP,检查Overlay加载状态) 2. **PYNQ中如何为自定义IP核分配DMA缓冲区?** (需结合`pynq.lib.dma`模块和硬件设计文件) 3. **遇到`Overlay`加载错误应如何排查?** (检查.bit文件路径、设备兼容性及日志输出) [^1]: 成功解决ImportError: cannot import name '_new_empty_tensor' from 'torchvision.ops' (D:\python\lib\site-packages\torchvision\ops\__init__.py) [^2]: python 报错 ModuleNotFoundError: No module named ‘chardet‘ 解决方法 [^3]: ImportError: libgomp-804f19d4.so.1.0.0: cannot allocate memory in static TLS block 解决方案 [^4]: cannot import name ‘xlnk‘ from ‘pynq‘ (/usr/local/share/pynq-venv/lib/python3.10/site-packages/...。 data_in=allocate(shape=(4,416,416),dtype=np.float16) #conv1 W_conv1=allocate(shape=(16,4,3,3),dtype=np.float16) b_conv1=allocate(shape=(16),dtype=np.float16) h_conv1=allocate(shape=(16,416,416),dtype=np.float16) h_pool1=allocate(shape=(16,208,208),dtype=np.float16)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值