Unity 2D Animation(2D动画)学习

本文详细介绍了如何使用Unity的2DAnimation功能在2D图片上制作骨骼动画,包括准备工作、SkinningEditor使用、图片编辑、骨骼动画添加及动画文件应用,帮助读者快速掌握2D动画创作技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

引言

2D Animation是Unity2018版本之后出来的新功能,我们可以用其在2D图片上制作骨骼动画。

例如我们可以将下面这张2D图片添加一个动画。

       

由于是简单的一张图片,所以效果不是特别好,我们也可以在PhotoShop中一张完整的图片切割成好几个部分(图层),然后导出一个PSB文件(PSD文件暂时不支持)来单独处理每个图层的动画效果。

接着跟着一起,让图片动起来吧。

 

准备工作:

官方文档:https://docs.unity3d.com/Packages/com.unity.2d.animation@3.1/manual/index.html

打开Window->Package Manager,安装2D Animation,如果需要支持PSB文件,需要安装2D PSD Importer。

个人使用的Unity版本为2019.3,2D Animation版本为3.1.1。

挑一张你喜欢的图片,放进Unity工程当中。

 

Skinning Editor介绍

首先我们将图片的Texture Type设置为Sprite(2D and UI),点击Sprite Editor按钮,打开编辑界面

然后我们选择Skinning Editor

在Skinning Editor中,我们可以进行骨骼网格以及权重的编辑。

在这里简单的介绍下界面中这些按钮的功能

按钮快捷键功能
icon_RestoreBindReset PoseShift + 1将角色的骨骼关节恢复到原始的位置
icon_VisibilityVisibilityShift + P打开一个新的面板,在里面可以设置骨骼和图片的可见性
icon_PreviewPosePreview PoseShift + Q设置好后可以在这通过旋转骨骼预览效果
icon_EditJointsEdit BoneShift + W编辑骨骼,可以调整骨骼的位置方向和大小等
icon_CreateBoneCreate BoneShift + E创建新的骨骼
icon_SplitBoneSplit BoneShift + R拆分骨骼,即将原有骨骼拆分为两个新的骨骼
icon_GenGeoAuto GeometryShift + A自动生成网格
icon_EditGeoEdit GeometryShift + S编辑网格,可以调整顶点和边缘线的位置
icon_CreateVertexCreate VertexShift + J添加新的顶点
icon_CreateEdgeCreate EdgeShift + G添加新的边缘线,先选中一个顶点然后拖动即可
icon_SplitEdgeSplit EdgeShift + H拆分边缘线
icon_GenWeightsAuto WeightsShift + Z自动生成几何权重
icon_WeightSliderWeight SliderShift + X通过滑动条调整权重
icon_WeightPaintWeight BrushShift + N通过笔刷调整权重

我们可以通过双击图片来显示网格和骨骼,或者双击空白处来隐藏这些。也可以通过按住鼠标左键拖动来进行多选,若要取消当前选中,单击鼠标右键即可。

 

编辑图片

首先我们先简单的添加一些骨骼,如图

骨骼添加好后,我们选择Auto Geometry,为其添加网格与权重。

Outline Detail值越大,生成的边缘线越多,细节越好
Alpha Tolerance当像素的透明度低于设置的值,在边缘线生成检测时,该像素当透明处理
Subdivide值越大生成的顶点越多,划分的更细
Weights选中时,同时生成权重

调整数值后,生成的效果如下:

权重生成出一堆五颜六色的区块,一开始有点懵,后面通过旋转骨骼后发现,这些颜色区块都是对应一个骨骼,当一个骨骼旋转时,与其颜色相近的部分都会受到影响,进行旋转。

选中Edit Geometry,可以看见生成的顶点以及边缘线

此时我们点击Preview Pose,把骨骼进行简单的旋转,发现变形的厉害,这也印证了前面权重的意义。

点击Reset Pose恢复到原始样子,重新编辑下我们的骨骼顶点和权重,可以自己添加一些顶点,也可以将自动生成的几个参数调大一点重新生成。调整后大致如下

    

然后再去转动骨骼会发现基本效果就好了很多。

点击Visibility按钮会打开一个新的面板,如图

上面两个滑动条分别控制骨骼和权重的可见性,也就是透明度,然后两个按钮Bone和Sprite分别显示当前的骨骼和图片。然后我们可以在下面的列表中去隐藏骨骼或者贴图。(由于我只用了一张图片,所以没有Sprite选项)

全部搞好之后,记得点击Apply提交一下。

 

导入场景中

接着我们可以直接将图片拖到场景中,然后为其添加Sprite Skin组件,点击该组件的Create Bones按钮即可在子节点下自动生成骨骼。旋转这些骨骼,图片也会跟着相应的转动。

                 

 

添加动画

最后我们只需要添加上动画文件就可以让其动起来了。

在组件上继续添加一个Animator组件,然后在Project面板中Create一个Animator Controller文件,关联到该组件上。然后再Create一个Animation文件,双击Animator文件,关联上我们的Animation。

        

双击Animation文件打开编辑面板,然后Hierarchy中选中我们的图片,为我们的骨骼添加动画。

 

全部搞好后,点击运行,我们的图片就会动起来啦。

 

DQN(Deep Q-Network)是一种使用深度神经网络实现的强化学习算法,用于解决离散动作空间的问题。在PyTorch中实现DQN可以分为以下几个步骤: 1. 定义神经网络:使用PyTorch定义一个包含多个全连接层的神经网络,输入为状态空间的维度,输出为动作空间的维度。 ```python import torch.nn as nn import torch.nn.functional as F class QNet(nn.Module): def __init__(self, state_dim, action_dim): super(QNet, self).__init__() self.fc1 = nn.Linear(state_dim, 64) self.fc2 = nn.Linear(64, 64) self.fc3 = nn.Linear(64, action_dim) def forward(self, x): x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x ``` 2. 定义经验回放缓存:包含多条经验,每条经验包含一个状态、一个动作、一个奖励和下一个状态。 ```python import random class ReplayBuffer(object): def __init__(self, max_size): self.buffer = [] self.max_size = max_size def push(self, state, action, reward, next_state): if len(self.buffer) < self.max_size: self.buffer.append((state, action, reward, next_state)) else: self.buffer.pop(0) self.buffer.append((state, action, reward, next_state)) def sample(self, batch_size): state, action, reward, next_state = zip(*random.sample(self.buffer, batch_size)) return torch.stack(state), torch.tensor(action), torch.tensor(reward), torch.stack(next_state) ``` 3. 定义DQN算法:使用PyTorch定义DQN算法,包含训练和预测两个方法。 ```python class DQN(object): def __init__(self, state_dim, action_dim, gamma, epsilon, lr): self.qnet = QNet(state_dim, action_dim) self.target_qnet = QNet(state_dim, action_dim) self.gamma = gamma self.epsilon = epsilon self.lr = lr self.optimizer = torch.optim.Adam(self.qnet.parameters(), lr=self.lr) self.buffer = ReplayBuffer(100000) self.loss_fn = nn.MSELoss() def act(self, state): if random.random() < self.epsilon: return random.randint(0, action_dim - 1) else: with torch.no_grad(): q_values = self.qnet(state) return q_values.argmax().item() def train(self, batch_size): state, action, reward, next_state = self.buffer.sample(batch_size) q_values = self.qnet(state).gather(1, action.unsqueeze(1)).squeeze(1) target_q_values = self.target_qnet(next_state).max(1)[0].detach() expected_q_values = reward + self.gamma * target_q_values loss = self.loss_fn(q_values, expected_q_values) self.optimizer.zero_grad() loss.backward() self.optimizer.step() def update_target_qnet(self): self.target_qnet.load_state_dict(self.qnet.state_dict()) ``` 4. 训练模型:使用DQN算法进行训练,并更新目标Q网络。 ```python dqn = DQN(state_dim, action_dim, gamma=0.99, epsilon=1.0, lr=0.001) for episode in range(num_episodes): state = env.reset() total_reward = 0 for step in range(max_steps): action = dqn.act(torch.tensor(state, dtype=torch.float32)) next_state, reward, done, _ = env.step(action) dqn.buffer.push(torch.tensor(state, dtype=torch.float32), action, reward, torch.tensor(next_state, dtype=torch.float32)) state = next_state total_reward += reward if len(dqn.buffer.buffer) > batch_size: dqn.train(batch_size) if step % target_update == 0: dqn.update_target_qnet() if done: break dqn.epsilon = max(0.01, dqn.epsilon * 0.995) ``` 5. 测试模型:使用训练好的模型进行测试。 ```python total_reward = 0 state = env.reset() while True: action = dqn.act(torch.tensor(state, dtype=torch.float32)) next_state, reward, done, _ = env.step(action) state = next_state total_reward += reward if done: break print("Total reward: {}".format(total_reward)) ``` 以上就是在PyTorch中实现DQN强化学习的基本步骤。需要注意的是,DQN算法中还有很多细节和超参数需要调整,具体实现过程需要根据具体问题进行调整。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值