ggplot2 | 单细胞类间比较的火山图 - 经典效果

1.定义画图函数

定义函数。

VolcanoPlot=function(dif, log2FC=log2(1.5), padj=0.05, 
                 label.symbols=NULL, label.max=30,
                 cols=c("#497aa2", "#ae3137"), title=""){
  if( all( !c("log2FoldChange", "padj", "symbol") %in% colnames(dif) )){
    stop("Colnames must include: log2FoldChange, padj, symbol")
  }
  rownames(dif)=dif$symbol
  
  # (1) define up and down
  dif$threshold="ns";
  dif[which(dif$log2FoldChange > log2FC & dif$padj <padj),]$threshold="up";
  dif[which(dif$log2FoldChange < (-log2FC) & dif$padj < padj),]$threshold="down";
  dif$threshold=factor(dif$threshold, levels=c('down','ns','up'))
  #head(dif)
  #
  tb2=table(dif$threshold); print(tb2)
  library(ggplot2)
  # (2) plot
  g1 = ggplot(data=dif, aes(x=log2FoldChange, y=-log10(padj), color=threshold)) +
    geom_point(alpha=0.8, size=0.8) +
    geom_vline(xintercept = c(-log2FC, log2FC), linetype=2, color="grey")+
    geom_hline(yintercept = -log10(padj), linetype=2, color="grey")+
    labs(title= ifelse(""==title, "", paste("DEG:", title)))+
    xlab(bquote(Log[2]*FoldChange))+
    ylab(bquote(-Log[10]*italic(P.adj)) )+
    theme_classic(base_size = 14) +
    theme(legend.box = "horizontal",
          legend.position="top",
          legend.spacing.x = unit(0, 'pt'),
          legend.text = element_text( margin = margin(r = 20) ),
          legend.margin=margin(b= -10, unit = "pt"),
          plot.title = element_text(hjust = 0.5, size=10)
          ) +
    scale_color_manual('',labels=c(paste0("down(",tb2[[1]],')'),'ns',
                                   paste0("up(",tb2[[3]],')' )),
                       values=c(cols[1], "grey", cols[2]) )+
    guides(color=guide_legend(override.aes = list(size=3, alpha=1))); g1;
  # (3)label genes
  if(is.null(label.symbols)){
    dif.sig=dif[which(dif$threshold != "ns" ), ]
    len=nrow(dif.sig)
    if(len<label.max){
      label.symbols=rownames(dif.sig)
    }else{
      dif.sig=dif.sig[order(dif.sig$log2FoldChange), ]
      dif.sig= rbind(dif.sig[1:(label.max/2),], dif.sig[(len-label.max/2):len,])
      label.symbols=rownames(dif.sig)
    }
  }
  dd_text = dif[label.symbols, ]
  print((dd_text))
  # add text
  library(ggrepel)
  g1 + geom_text_repel(data=dd_text,
                       aes(x=log2FoldChange, y=-log10(padj), label=row.names(dd_text)),
                         #size=2.5, 
                         colour="black",alpha=1)
}

2.获得差异基因

直接使用Seurat 4 的函数比较两个类,获得DEG:

deg_all=FindMarkers(scObj, ident.1 = "DSS", ident.2 = "WT", group.by="origin", min.pct = 0.001)
dim(deg_all) #2137    5
head(deg_all)

3.构建中间数据 dif

dif=data.frame(
  symbol=rownames(deg_all),
  log2FoldChange=deg_all$avg_log2FC,
  padj=deg_all$p_val_adj
)

4.画图

# 可以指定要标记的DEG数量,选出FC最大和最小的基因标记
VolcanoPlot(dif, padj=0.05, title="DSS vs WT", label.max = 50)
# 自定义颜色
VolcanoPlot(dif, padj=0.05, title="DSS vs WT", label.max = 50, cols=c("blue", "red"))


# 也可以指定要标记的基因名字
VolcanoPlot(dif, padj=1e-10, title="DSS vs WT -2", 
            label.symbols=dif[ ((abs(dif$log2FoldChange) > 2) & (dif$padj < 1e-50) ) | 
                                      abs(dif$log2FoldChange) > 4,]$symbol )

在这里插入图片描述

在这里插入图片描述

请关注 生物慕课 查看更多教程。

### RNA-seq 数据可视化的常用方法和工具 #### scRNAtoolVis 工具介绍 scRNAtoolVis 是一个专门为单细胞 RNA 测序 (scRNA-seq) 设计的 R 包,能够帮助研究人员轻松创建美观且信息丰富的可视化表。该工具不仅适合初学者也适用于有经验的生物信息学家,提供了多种功能使数据分析更直观高效[^1]。 #### 常见的 RNA-seq 数据可视化形式 为了更好地理解和解释 RNA 序列数据的结果,通常会采用几种不同的形表示方式: - **火山**:这种型的表用来展示基因表达水平的变化情况以及统计显著性之的关系。通过这种方式可以帮助快速识别那些既具有高倍数变化又达到统计意义的重要基因。 - **热**:用于显示样本相似性和差异性的矩阵像。它可以清晰地呈现出哪些样品聚在一起形成簇群,从而揭示潜在生物学特性或实验条件的影响因素。 除了上述两种之外还有其他多种形式如散点、箱线等都可以有效地辅助研究者解读复杂多变的数据集特征[^4]。 #### 准备工作与流程概述 在进行任何有效的可视化之前,必须先完成必要的预处理步骤。这包括获取高质量 .fastq 文件作为输入源;接着执行序列比对至参考基因组并计算各转录本丰度值;最后一步则是针对可能存在的批次效应或其他干扰变量实施标准化措施以确保后续比较的有效性[^3]。 ```r # 示例代码片段 - 使用 ggplot2 绘制简单火山 library(ggplot2) volcano_data <- data.frame(logFC = rnorm(100), pvalue = runif(100)) ggplot(volcano_data, aes(x=logFC, y=-log10(pvalue))) + geom_point()+ theme_minimal() ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值