warmup与余弦退火学习率

warmup与余弦退火学习率策略通过逐步提升然后按余弦函数衰减学习率,帮助模型避免初期过拟合,加速收敛,并保持稳定性。在PyTorch中,可以通过GradualWarmupScheduler实现此策略,结合tensorboard可直观观察学习率变化。该策略在训练初期从较小学习率开始,逐渐增加到最大值,随后以余弦曲线方式降低,确保模型优化过程平稳。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

warmup与余弦退火学习率的主要思路是学习率先从很小的数值线性增加到预设学习率,然后按照余弦函数值进行衰减。为什么要这么做的呢?主要有如下原因:

1. 在模型的训练之初weights是随机初始化的,可以理解模型对数据的“理解程度”为0,也就是说没有任何先验知识,在第一个epoche中,每个batch的数据对模型来说都是新的,模型会根据输入的数据进行快速调参,此时如果采用较大的学习率的话,有很大的可能使模型对于数据“过拟合”,后续需要更多的轮次才能“拉回来”;
2. 当模型训练一段时间之后(如:10epoch或10000steps),模型对数据具有一定的先验知识,此时使用较大的学习率模型就不容易学“偏”,可以使用较大的学习率加速模型收敛;
3. 当模型使用较大的学习率训练一段时间之后,模型的分布相对比较稳定,此时不宜从数据中再学到新特点,如果仍使用较大的学习率会破坏模型的稳定性,而使用小学习率更容易获取局部最优值。

学习率的变化趋势类似下图所示,学习率先从很小的数值线性增加到一个最大的学习率,然后按照余弦函数值进行衰减:


在pytorch中实现warmup与余弦退火学习率的伪代码如下:

from warmup_scheduler import GradualWarmupScheduler

MAX_EPOCH=100
INIT_LR = 0.01
WARMUP_LR_TIMES = 10
WARMUP_EPOCH = 5
optimizer = optim.SGD(net.parameters(), lr=INIT_LR, momentum=0.9)
cosine_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer=optimizer, 
                                                              T_max=MAX_EPOCH, 
                                                              eta_min=0, 
                                                              last_epoch=-1)
scheduler = GradualWarmupScheduler(optimizer, 
                                   multiplier=WARMUP_LR_TIMES, 
                                   total_epoch=WARMUP_EPOCH, 
                                   after_scheduler=cosine_scheduler)

for epoch in range(1, MAX_EPOCH):
    ... ...

    optimizer.step()

    ... ...

    scheduler.step(epoch)
    print(epoch, optim.param_groups[0]['lr'])

    ... ...

 API :

torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max, eta_min=0, last_epoch=-1, verbose=False)

optimizer:学习率调整器作用的优化器,在初始化optimizer时就设定了初始学习率。
T_max:最大迭代次数或最大epoch数量。
eta_min:最小学习率。
last_epoch:最后一个epoch的index,默认值为-1。如果是训练了很多个epoch后中断了,继续训练,这个值就设置为加载模型的epoch,-1表示总是从头开始训练。
verbose:若为true,每次更新时会打印一些信息。

GradualWarmupScheduler(optimizer, multiplier, total_epoch
<think>嗯,用户想了解YOLO中的余弦退火学习率,我得先回顾一下相关概念。首先,余弦退火学习率是一种学习率调整策略,常用于深度学习训练中。它通过模拟余弦函数的形状来调整学习率,帮助模型跳出局部最优,寻找更好的解。 YOLO作为目标检测模型,训练时通常需要大量数据长时间的训练,所以优化学习率很关键。用户可能想知道余弦退火在YOLO中的具体应用,比如参数设置、代码实现等。需要确认YOLO版本,因为不同版本可能实现方式不同,比如YOLOv3、v4或v5可能使用不同的训练策略。 接下来,应该解释余弦退火的原理。基本思想是学习率余弦曲线从初始值下降到最低值,每个周期重复这个过程。公式应该是这样的:$$ \eta_t = \eta_{min} + \frac{1}{2}(\eta_{max} - \eta_{min})(1 + \cos(\frac{T_{cur}}{T_{max}} \pi)) $$ 其中,$\eta_{max}$$\eta_{min}$是学习率的上下界,$T_{cur}$是当前epoch数,$T_{max}$是总epoch数。 然后要说明为什么余弦退火有效。可能是在训练初期用较大的学习率快速收敛,后期逐渐减小以微调。周期性调整还能帮助跳出局部极小值,这在YOLO中尤其重要,因为目标检测任务复杂,容易陷入局部最优。 接下来是具体在YOLO中的应用。例如,在YOLOv5中,可能通过配置文件设置学习率调度器为cosine。代码实现可能涉及PyTorch的CosineAnnealingLR或类似的调度器。需要给出示例代码,比如定义优化器调度器,并说明参数如T_maxeta_min的设置。 另外,用户可能需要知道如何调整参数。比如,初始学习率的选择,周期长度的影响。如果周期太短,可能无法充分收敛;太长则训练时间增加。还要注意热身(warmup)策略结合使用,避免初始阶段学习率过高导致的不稳定。 最后,总结优缺点。优点包括自动调整、避免局部最优,可能提升模型精度。缺点可能是需要调参,周期设置不当影响效果。另外,引用相关文献,比如YOLO的论文或PyTorch文档,增加可信度。 用户可能的问题还包括如何其他学习率策略比较,比如StepLR或OneCycle,这时候需要简要对比。同时,实际应用中的常见问题解决方法,比如学习率震荡太大怎么办,或者如何监控学习率的效果。 总的来说,回答需要结构清晰,先解释概念,再讲原理,然后具体到YOLO的实现,最后给出使用建议示例代码。确保引用正确,比如YOLOv5的官方文档或相关论文。</think>### YOLO中余弦退火学习率的概念及用法 #### 1. 基本概念 余弦退火学习率(Cosine Annealing Learning Rate)是一种周期性调整学习率的策略,其核心思想是**模拟余弦函数曲线**对学习率进行动态调整。在YOLO训练中,它通过以下公式实现: $$ \eta_t = \eta_{min} + \frac{1}{2}(\eta_{max} - \eta_{min})(1 + \cos(\frac{T_{cur}}{T_{max}} \pi)) $$ 其中: - $\eta_{max}$:学习率上限(初始学习率) - $\eta_{min}$:学习率下限 - $T_{cur}$:当前训练周期(epoch) - $T_{max}$:总训练周期或周期长度 #### 2. 在YOLO中的作用 - **跳出局部最优**:周期性调整学习率可帮助模型逃离局部极小值(尤其在目标检测任务中常见) - **平衡收敛速度精度**:初期大学习率快速收敛,后期小学习率精细调参 - **兼容其他优化策略**:常动量优化、权重衰减结合使用[^1] #### 3. YOLO实现示例(以YOLOv5为例) ```python # YOLOv5官方训练配置片段(简化版) optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.937) scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=300, eta_min=0.0001) for epoch in range(300): train() validate() scheduler.step() ``` 关键参数说明: - `T_max=300`:总训练周期为300 - `eta_min=0.0001`:最小学习率下限 - 初始学习率`lr=0.01`对应$\eta_{max}$ #### 4. 最佳实践建议 1. **周期长度设置**:一般取总epoch数的$\frac{1}{4}$到$\frac{1}{2}$(例如300 epoch可设$T_{max}=50$进行多周期循环) 2. **预热(Warmup)配合**:前3-5个epoch使用线性增长学习率避免初始震荡 3. **监控学习率曲线**:通过TensorBoard等工具确保符合预期形状 4. **参数敏感性测试**:对$\eta_{max}$$\eta_{min}$进行网格搜索 #### 5. 优缺点对比 | 优点 | 缺点 | |------|------| | 自动调整无需手动干预 | 需合理设置周期长度 | | 提升模型收敛稳定性 | 可能延长训练时间 | | 兼容多种网络结构 | 超参数选择依赖经验 | [^1]: 参考PyTorch官方文档对余弦退火策略的解释:https://pytorch.org/docs/stable/optim.html#torch.optim.lr_scheduler.CosineAnnealingLR
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

洪流之源

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值