引言
起因是在python下处理点云数据比较麻烦,对于一些深度学习模型输出的点云处理结果,想在C++下使用pcl库进行后处理,所以考虑到如何将任意的xyz数据输出为.pcd文件,然后使用pcl库读取.pcd文件来处理点云。下面的内容分析了pcd文件的前缀格式和含义。
脚本地址:GitHub
1. PCD版本
在点云库PCL 1.0发布之前,PCD文件格式就已经发展更新了许多版本。这些新旧不同的版本用PCD_Vx来编号(例如PCD_V5、PCD_V6和PCD_V7等),分别代表PCD文件的0.5版、0.6版和0.7版。在PCL中,用到的PCD文件格式的正式发布是0.7版,即PCD_V7。
2. 文件格式
PCD文由 “头文件 + 点云数据” 构成,头文件声明了该点云数据集的基本特性。下面以PCD_V7版本的PCD文件为例,对头文件进行介绍。头文件及部分点云数据如下所示:
# .PCD v0.7 - Point Cloud Data file format
VERSION 0.7
FIELDS x y z
SIZE 4 4 4
TYPE F F F
COUNT 1 1 1
WIDTH 35947
HEIGHT 1
VIEWPOINT 0 0 0 1 0 0 0
POINTS 35947
DATA ascii
-1.10698 3.272394 -0.447241
-1.80195 3.367094 -0.704211
-4.12496 5.602794 2.824819
下面我们来一句一句进行解读:
3. VERSION
指定PCD文件的版本,由0.7可知该点云数据集是0.7版本的。
VERSION 0.7 //PCD版本号为0.7版
4. FIELDS
指定本点云数据集中任意一个点可以有的维度信息和其他附加信息。如:FIELDS x y z 指每个点都有xyz三个维度信息,FIELDS x y z rgb 指每个点除了xyz维度信息外还有颜色信息等。
FIELDS x y z //该数据集中包含每一个点的xyz纬度信息
5. SIZE
储存每个维度信息占用的字节数(byte)。1指用char型数据存储维度信息,2指用short型数据存储维度信息,4指用int或float型数据存储维度信息,8指用double型数据存储维度信息。
SIZE 4 4 4 //x y z每个维度均占用4个字节
6. TYPE
用字符指定每一个维度的数据类型。I表示有符号类型:int8(char),int16(short),int32(int);U表示无符号类型:uint8(unsigned char),uint 16(unsigned short),uint32(unsigned int);F表示浮点型float和double。
TYPE F F F //x y z每个维度的均为4字节的浮点型,即为float
7. COUNT
每个维度包含的元素个数。
COUNT 1 1 1 //x y z每个维度均包含1个元素
8. WIDTH
点云数据集可分为有序数据集和无序数据集两种。有序数据集类似矩阵,有行列之分,无序数据集则无行列之分。根据数据集是否有序,WIDTH由不同的含义。
对有序数据集而言:表示数据集的宽度(每行点的数目);
对于无序数据集而言:表示数据集中点的总数(和下面的POINTS一样)。
9. HEIGHT
对有序数据集而言:表示数据集的高度(行数);
对于无序数据集而言:被设置为1,用于声明一个数据集是否有序。
//该数据集为无序数据集,共有35947个点
WIDTH 35947
HEIGHT 1
10. VIEWPOINTS
数据集中点云的获取视点。视点信息被指定为“平移(txtytz) + 四元数(qwqxqyqz)”,默认值是:VIEWPOINT 0 0 0 1 0 0 0
VIEWPOINT 0 0 0 1 0 0 0 //数据集的获取视点
11. POINTS
点云中点的总数,从0.7版本就开始显得有点多余,可能会在后续版本中舍去这个参数。
POINTS 35947 //该数据集中共有35947个点
12. DATA
指定存储点云数据的数据存储格式:ASCLL码或二进制数据。
DATA ascii //该数据集用ASCLL码存储数据
13. 点云数据
以ASCLL码存储的点云数据,每一个点占据一行,“nan”表示不存在或非法的数据。
-1.10698 3.272394 -0.447241
-1.80195 3.367094 -0.704211
-4.12496 5.602794 2.824819
......