序号 | 内容 |
---|---|
1 | 【数理知识】自由度 degree of freedom 及自由度的计算方法 |
2 | 【数理知识】刚体 rigid body 及刚体的运动 |
3 | 【数理知识】刚体基本运动,平动,转动 |
4 | 【数理知识】向量数乘,内积,外积,matlab代码实现 |
1 刚体定义
刚体就是质点间距离保持不变的质点系。
刚体的空间位置由任意与刚体固连的不共线三点决定。
2 自由刚体
自由刚体指上述提到的不共线三点,它们任意两点间的距离都保持不变,除此之外不再受到其它任何额外约束。
而自由刚体的自由度为
D
o
F
=
6
DoF = 6
DoF=6
3 两种基本运动
1 平动
平动是指刚体重任何两点的连线在运动中保持方向不变。
平动刚体的自由度为
D
o
F
=
3
DoF = 3
DoF=3
这是因为平动仅表示了在 x 、 y 、 z x、y、z x、y、z 轴上的移动。这一点在之前的文章 【数理知识】自由度 degree of freedom 及自由度的计算方法 也已经有过描述。
注意:平动刚体的运动可由基点运动确定。
2 转动
刚体的转动过程中,有两点(如下图中的 A , B A, B A,B)的连线不动。
A B AB AB 称为转动轴,如果它始终不动,则称为固定转动轴(或固定轴);如果它只是瞬时不动,则称为顺势转动轴(或瞬时轴)。
另外,基点或转动轴可在刚体之外,只需与刚体固连。
这也引出了欧拉(Euler)转动定理:刚体绕定点的有限转动可以合成为绕经过该顶点的某一直线的一次转动。因此,刚体的简单转动可以由旋转轴和旋转角唯一确定。
下面两副图分别表示了刚体的定轴运动和定点运动。
综上所述,也就是夏莱(Chasles)定理:刚体一般运动可以分解为任选基点的平动和绕通过基点的某个轴的转动。选择不同基点时得到的平动位移是不同的,但转动轴的方向和转角不依赖于基点的选择。