复变函数论3-复变函数的积分3-柯西积分公式及其推论3-1:柯西不等式

本文介绍了复变函数论中的柯西积分公式,该公式是解析函数积分表达式,对于研究解析函数的局部性质至关重要。此外,还详细阐述了柯西不等式,该不等式提供了解析函数各阶导数模的估计,并揭示了解析函数性质与其解析区域大小的关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

定理 3.11

设区域 D D D 的边界是周线 (或复周线) C C C, 函数 f ( z ) f(z) f(z) D D D内解析, 在 D ˉ = \bar{D}= Dˉ= D + C D+C D+C 上连续,则有

f ( z ) = 1 2 π i ∫ C f ( ζ ) ζ − z   d ζ ( z ∈ D ) . ( 3.16 ) f(z)=\cfrac{1}{2 \pi \mathrm{i}} \int_{C} \cfrac{f(\zeta)}{\zeta-z} \mathrm{~d} \zeta \quad(z \in D) . \quad\quad(3.16) f(z)=2πi1Cζzf(ζ) d

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值