复变函数论3-复变函数的积分2-柯西积分定理5:柯西积分定理推广到复周线的情形

本文介绍了如何将柯西积分定理从单周线推广到复周线的情况。定义了复周线的概念,并通过定理3.10阐述了在有界多连通区域中,解析函数的积分特性,即沿复周线的积分等于零。此外,通过举例说明了该定理的应用,包括奇点的积分计算和多连通区域内的不定积分。
摘要由CSDN通过智能技术生成

下面我们从另一个方面再推广柯西积分定理,即将柯西积分定理从以一条(单) 周线为边界的有界单连通区域,推广到以多条周线组成的"复周线"为边界的有界多连通区域.

定义 3.3

考虑 n + 1 n+1 n+1 条周线 C 0 , C 1 , C 2 , ⋯   , C n C_{0}, C_{1}, C_{2}, \cdots, C_{n} C0,C1,C2,,Cn, 其中 C 1 , C 2 , ⋯   , C n C_{1}, C_{2}, \cdots, C_{n} C1,C2,,Cn 中每一条都在其余各条的外部, 而它们又全都在 C 0 C_{0} C0 的内部. 在 C 0 C_{0} C0 的内部同时又在 C 1 , C 2 , ⋯   , C n C_{1}, C_{2}, \cdots, C_{n} C1,C2,,Cn外部的点集构成一个有界的 n + 1 n+1 n+1 连通区域 D D D, 以 C 0 , C 1 , C 2 , ⋯   , C n C_{0}, C_{1}, C_{2}, \cdots, C_{n} C0,C1,C2,,Cn 为它的边界. 在这种情况下,我们称区域 D D D 的边界是一条复周线:

C = C 0 + C 1 − + C 2 − + ⋯ + C n − , C=C_{0}+C_{1}^{-}+C_{2}^{-}+\cdots+C_{n}^{-}, C=C0+C1+C2++Cn,

它包括取正方向的 C 0 C_{0} C0, 以及取负方向的 C 1 , C 2 , ⋯   , C n C_{1}, C_{2}, \cdots, C_{n} C1,C2,,Cn.换句话说, 假如观察者沿复周线 C C C 的正方向绕行, 则区域 D D D的点总在他的左手边 (图 3.10 是 n = 2 n=2 n=2的情形).

在这里插入图片描述

定理 3.10

D D D 是由复周线

C = C 0 + C 1 − + C 2 − + ⋯ + C n − C=C_{0}+C_{1}^{-}+C_{2}^{-}+\cdots+C_{n}^{-} C=C0+C1+C2++Cn

所围成的有界 n + 1 n+1 n+1 连通区域, 函数 f ( z ) f(z) f(z) D D D 内解析, 在 D ˉ = D + C \bar{D}=D+C Dˉ=D+C上连续,则

∫ C f ( z ) d z = 0 , \int_{C} f(z) \mathrm{d} z=0, Cf(z)dz=0,

或写成

∫ C 0 f ( z ) d z + ∫ C 1 f ( z ) d z + ⋯ + ∫ C n f ( z ) d z = 0 , \int_{C_{0}} f(z) \mathrm{d} z+\int_{C_{1}} f(z) \mathrm{d} z+\cdots+\int_{C_{n}} f(z) \mathrm{d} z=0,

  • 17
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值