复变函数论3-复变函数的积分2-柯西积分定理2:柯西积分定理的古尔萨证明

本文详细介绍了复变函数柯西积分定理的古尔萨证明方法,通过逐步分析,首先证明了三角形内复变函数积分的性质,然后推广到简单闭折线,最后延伸到任意周线,最终得出积分值为0的结论,展示了复变函数积分的深刻性质。

第一步:

CCCDDD 内任一个三角形△\triangle.

假设 ∣∫△f(z)dz∣=M\left|\int_{\triangle} f(z) \mathrm{d} z\right|=M f(z)dz =M. 我们来证明 M=0M=0M=0.

在这里插入图片描述

二等分给定三角形 △\triangle 的每一边, 两两连接这些分点, △\triangle就被分成了四个全等的三角形,它们的周界是△1,△2,△3,△4(\triangle_{1}, \triangle_{2}, \triangle_{3}, \triangle_{4}(1,2,3,4( 如图3.5).

显然有

∫Δf(z)dz=∫Δ1f(z)dz+∫Δ2f(z)dz+∫ΔJf(z)dz+∫Δ1f(z)dz.\int_{\Delta} f(z) \mathrm{d} z=\int_{\Delta_{1}} f(z) \mathrm{d} z+\int_{\Delta_{2}} f(z) \mathrm{d} z+\int_{\Delta J} f(z) \mathrm{d} z+\int_{\Delta_{1}} f(z) \mathrm{d} z .Δf(z)dz=Δ1f(z)dz+Δ2f(z)dz+ΔJf(z)dz+Δ1f(z)dz.

因为在这里沿每一条连接分点的线段的积分从彼此正好相反的方向取了两次,刚好互.相抵消.由于 ∣∫△f(z)dz∣=M\left|\int_{\triangle} f(z) \mathrm{d} z\right|=M f(z)dz =M,根据(3.4), 周界 △k(k=1,2,3,4)\triangle_{k}(k=1,2,3,4)k(k=1,2,3,4)中至少有一个使沿着它所取积分的模不小于 M4\frac{M}{4}4M.比如说.假定这个周界是 △(1)=△1\triangle^{(1)}=\triangle_{1}(1)=1,

∣∫Δ(1)f(z)dz∣⩾M4.\left|\int_{\Delta(1)} f(z) \mathrm{d} z\right| \geqslant \frac{M}{4} . Δ(1)f(z)dz 4M.

对于这个三角形周界 △(1)\triangle^{(1)}(1), 和前面一样,我们把它分成四个全等三角形.于是, 在以 Δ(1)\Delta^{(1)}Δ(1)为周界的三角形内的四个三角形中我们又可以找到一个三角形,记它的周界为△(2)\triangle^{(2)}(2), 使

∣∫Δ(2)f(z)dz∣⩾M42.\left|\int_{\Delta^{(2)}} f(z) \mathrm{d} z\right| \geqslant \frac{M}{4^{2}} . Δ(2)f(z)dz 42M.

很明显. 这个作法可以无限制地做下去, 于是我们得到具有周界:Δ=Δ(0),Δ(1)\Delta=\Delta^{(0)}, \Delta^{(1)}Δ=Δ(0),Δ(1),Δ(2),Δ(3),⋯ ,Δ(n),⋯\Delta^{(2)}, \Delta^{(3)}, \cdots, \Delta^{(n)}, \cdotsΔ(2),Δ(3),,Δ(n), 的三角形序列,其中每一个包含后面的一个而且有下列不等式:

∣∫Δ(n)f(z)dz∣⩾M4n(n=0,1,2,⋯ ).\left|\int_{\Delta^{(n)}} f(z) \mathrm{d} z\right| \geqslant \frac{M}{4^{n}} \quad(n=0,1,2, \cdots) . Δ(n)f(z)dz 4nM(n=0,1,2,).

UUU 表示周界 △\triangle 的长度, 于是周界Δ(1),△(2),⋯ ,△(n),⋯\Delta^{(1)}, \triangle^{(2)}, \cdots, \triangle^{(n)}, \cdotsΔ(1),(2),,(n),相应的长度就是

U2,U22,⋯ ,U2n,⋯ .\frac{U}{2}, \frac{U}{2^{2}}, \cdots, \frac{U}{2^{n}}, \cdots .2U,22U,

项目资源包含:可运行源码+sql文件+LW; python3.8+django+mysql5.7+html 适用人群:学习不同技术领域的小白或进阶学习者;可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 系统基于Python语言和Django框架研究开发,利用MySQL进行数据管理,构建了一个符合现代教育需求的B/S结构题库管理子系统。系统主要为两种用户角色而设计,即管理员与教师。管理员有权管理教师档案、设置学院和专业目录、维护课程信息和整理题库,而教师端的功能则包括手动录入试题及批量导入试题,特别是对包含公式和图形的试题内容,系统能够实现精确解析和存储。 教师端的功能需求主要集中在试题的录入、管理和查询。教师需要能够方便地录入新的试题到系统中,包括填写题目的基本信息如题型、答案、难度等,并上传包含公式和图形的复杂试题内容。系统应允许教师对已录入的试题进行修改或删除,并提供高效的搜索功能,以便教师能快速找到特定的题目。教师还要能够批量导入试题,系统需支持不同格式的文档,TXT和DOC,并解析文档中的内容,包括图形和公式。 管理员的功能需求主要集中在系统管理和题库维护。管理员负责管理教师账户和权限设置,确保每位教师能够访问其应有的系统功能。管理员同时需要监控系统的整体性能和安全状态,执行必要的系统升级和维护,以保证系统的稳定运行。在题库管理方面,管理员需维护课程信息和相关的题库数据,包括增添查改与课程相关的题目。管理员还需要确保题库的内容准确无误,符合教学需求,并处理由教师提出的关于题库的任何问题。
内容概要:本文以“从单体到微服务的桥梁——Module模块化开发实践项目”为核心,系统阐述了模块化开发的进阶策略,涵盖模块通信、状态管理与测试隔离三大关键技术。文章提出模块化的“动态边界”理念,强调通信标准化、状态局部化、测试独立性和弹性扩展,并通过在线教育平台的课程服务模块在Spring Cloud微服务架构下的具体实现,展示了模块间同步与异步通信、基于事件驱动的数据一致性、以及单元测试、集成测试与契约测试的完整验证体系。此外,还探讨了模块化与云原生技术(如Serverless、Service Mesh、GitOps)的融合趋势。; 适合人群:具备一定Java和Spring Boot开发经验,正在参与或计划推进系统架构演进的中高级研发工程师、架构师,尤其是面临单体系统维护难题的技术负责人。; 使用场景及目标:①掌握如何将大型单体应用拆分为高内聚、低耦合的功能模块;②理解并实践模块间的高效通信机制(REST、消息队列、事件驱动);③实现模块数据自治与测试隔离,提升系统可维护性与可扩展性;④为后续向微服务或云原生架构演进奠定基础。; 阅读建议:此资源理论与实战紧密结合,建议结合文中Spring Cloud代码示例进行动手实践,重点关注Feign调用、事件监听、Mock测试等关键实现,并思考如何将所述策略应用于自身业务系统中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值