第一步:
CCC 为 DDD 内任一个三角形△\triangle△.
假设 ∣∫△f(z)dz∣=M\left|\int_{\triangle} f(z) \mathrm{d} z\right|=M ∫△f(z)dz =M. 我们来证明 M=0M=0M=0.

二等分给定三角形 △\triangle△ 的每一边, 两两连接这些分点, △\triangle△就被分成了四个全等的三角形,它们的周界是△1,△2,△3,△4(\triangle_{1}, \triangle_{2}, \triangle_{3}, \triangle_{4}(△1,△2,△3,△4( 如图3.5).
显然有
∫Δf(z)dz=∫Δ1f(z)dz+∫Δ2f(z)dz+∫ΔJf(z)dz+∫Δ1f(z)dz.\int_{\Delta} f(z) \mathrm{d} z=\int_{\Delta_{1}} f(z) \mathrm{d} z+\int_{\Delta_{2}} f(z) \mathrm{d} z+\int_{\Delta J} f(z) \mathrm{d} z+\int_{\Delta_{1}} f(z) \mathrm{d} z .∫Δf(z)dz=∫Δ1f(z)dz+∫Δ2f(z)dz+∫ΔJf(z)dz+∫Δ1f(z)dz.
因为在这里沿每一条连接分点的线段的积分从彼此正好相反的方向取了两次,刚好互.相抵消.由于 ∣∫△f(z)dz∣=M\left|\int_{\triangle} f(z) \mathrm{d} z\right|=M ∫△f(z)dz =M,根据(3.4), 周界 △k(k=1,2,3,4)\triangle_{k}(k=1,2,3,4)△k(k=1,2,3,4)中至少有一个使沿着它所取积分的模不小于 M4\frac{M}{4}4M.比如说.假定这个周界是 △(1)=△1\triangle^{(1)}=\triangle_{1}△(1)=△1,
∣∫Δ(1)f(z)dz∣⩾M4.\left|\int_{\Delta(1)} f(z) \mathrm{d} z\right| \geqslant \frac{M}{4} . ∫Δ(1)f(z)dz ⩾4M.
对于这个三角形周界 △(1)\triangle^{(1)}△(1), 和前面一样,我们把它分成四个全等三角形.于是, 在以 Δ(1)\Delta^{(1)}Δ(1)为周界的三角形内的四个三角形中我们又可以找到一个三角形,记它的周界为△(2)\triangle^{(2)}△(2), 使
∣∫Δ(2)f(z)dz∣⩾M42.\left|\int_{\Delta^{(2)}} f(z) \mathrm{d} z\right| \geqslant \frac{M}{4^{2}} . ∫Δ(2)f(z)dz ⩾42M.
很明显. 这个作法可以无限制地做下去, 于是我们得到具有周界:Δ=Δ(0),Δ(1)\Delta=\Delta^{(0)}, \Delta^{(1)}Δ=Δ(0),Δ(1),Δ(2),Δ(3),⋯ ,Δ(n),⋯\Delta^{(2)}, \Delta^{(3)}, \cdots, \Delta^{(n)}, \cdotsΔ(2),Δ(3),⋯,Δ(n),⋯ 的三角形序列,其中每一个包含后面的一个而且有下列不等式:
∣∫Δ(n)f(z)dz∣⩾M4n(n=0,1,2,⋯ ).\left|\int_{\Delta^{(n)}} f(z) \mathrm{d} z\right| \geqslant \frac{M}{4^{n}} \quad(n=0,1,2, \cdots) . ∫Δ(n)f(z)dz ⩾4nM(n=0,1,2,⋯).
用 UUU 表示周界 △\triangle△ 的长度, 于是周界Δ(1),△(2),⋯ ,△(n),⋯\Delta^{(1)}, \triangle^{(2)}, \cdots, \triangle^{(n)}, \cdotsΔ(1),△(2),⋯,△(n),⋯相应的长度就是
U2,U22,⋯ ,U2n,⋯ .\frac{U}{2}, \frac{U}{2^{2}}, \cdots, \frac{U}{2^{n}}, \cdots .2U,22U,

本文详细介绍了复变函数柯西积分定理的古尔萨证明方法,通过逐步分析,首先证明了三角形内复变函数积分的性质,然后推广到简单闭折线,最后延伸到任意周线,最终得出积分值为0的结论,展示了复变函数积分的深刻性质。
最低0.47元/天 解锁文章
1345

被折叠的 条评论
为什么被折叠?



