永磁同步电机电压方程在静止坐标系与运动坐标系间的相互转换

本文解决电压方程在静止坐标系与运动坐标系转换问题。本文将呈现的转换关系是电压方程由静止坐标系转换至运动坐标系,反之同理可证。


证明开始

[ u α u β ] = R [ i α i β ] + d d t [ ψ α ψ β ] ( 1 ) \left[ \begin{array}{c} u_{\alpha}\\ u_{\beta}\\ \end{array} \right] =R\left[ \begin{array}{c} i_{\alpha}\\ i_{\beta}\\ \end{array} \right] +\frac{\mathrm{d}}{\mathrm{dt}}\left[ \begin{array}{c} \psi _{\alpha}\\ \psi _{\beta}\\ \end{array} \right] \left( 1 \right) [uαuβ]=R[iαiβ]+dtd[ψαψβ](1)


P 2 r / 2 s = [ cos ⁡ θ e − sin ⁡ θ e sin ⁡ θ e cos ⁡ θ e ] ( 推导过程中记为 P ,正交矩阵的逆阵等于其转置 ) P_{2r/2s}=\left[ \begin{matrix} \cos \theta _e& -\sin \theta _e\\ \sin \theta _e& \cos \theta _e\\ \end{matrix} \right] \left( \text{推导过程中记为}P\text{,正交矩阵的逆阵等于其转置} \right) P2r/2s=[cosθesinθesinθecosθe](推导过程中记为P,正交矩阵的逆阵等于其转置)


P − 1 = [ cos ⁡ θ e sin ⁡ θ e − sin ⁡ θ e cos ⁡ θ e ] , d P d θ e = [ − sin ⁡ θ e − cos ⁡ θ e cos ⁡ θ e − sin ⁡ θ e ] , [ f α f β ] = P [ f d f q ] P^{-1}=\left[ \begin{matrix} \cos \theta _e& \sin \theta _e\\ -\sin \theta _e& \cos \theta _e\\ \end{matrix} \right] ,\frac{\mathrm{d}P}{\mathrm{d\theta_e}}=\left[ \begin{matrix} -\sin \theta _e& -\cos \theta _e\\ \cos \theta _e& -\sin \theta _e\\ \end{matrix} \right] \text{,}\left[ \begin{array}{c} f_{\alpha}\\ f_{\beta}\\ \end{array} \right] =P\left[ \begin{array}{c} f_d\\ f_q\\ \end{array} \right] P1=[cosθesinθesinθecosθe],dθedP=[sinθecosθecosθesinθe][fαfβ]=P[fdfq]


式子 ( 1 ) ⇒ P [ u d u q ] = R P [ i d i q ] + d d t { P [ ψ d ψ q ] } \text{式子}\left( 1 \right) \Rightarrow P\left[ \begin{array}{c} u_d\\ u_q\\ \end{array} \right] =RP\left[ \begin{array}{c} i_d\\ i_q\\ \end{array} \right] +\frac{\mathrm{d}}{\mathrm{dt}}\left\{ P\left[ \begin{array}{c} \psi _d\\ \psi _q\\ \end{array} \right] \right\} 式子(1)P[uduq]=RP[idiq]+dtd{P[ψdψq]}

上式两边同乘以 P − 1 , \text{上式两边同乘以}P^{-1}\text{,} 上式两边同乘以P1

⇒ [ u d u q ] = R [ i d i q ] + P − 1 d d t { P [ ψ d ψ q ] } \Rightarrow \left[ \begin{array}{c} u_d\\ u_q\\ \end{array} \right] =R\left[ \begin{array}{c} i_d\\ i_q\\ \end{array} \right] +P^{-1}\frac{\mathrm{d}}{\mathrm{dt}}\left\{ P\left[ \begin{array}{c} \psi _d\\ \psi _q\\ \end{array} \right] \right\} [uduq]=R[idiq]+P1dtd{P[ψdψq]}

⇒ [ u d u q ] = R [ i d i q ] + P − 1 ( P ⋅ d d t [ ψ d ψ q ] + d P d t ⋅ [ ψ d ψ q ] ) \Rightarrow \left[ \begin{array}{c} u_d\\ u_q\\ \end{array} \right] =R\left[ \begin{array}{c} i_d\\ i_q\\ \end{array} \right] +P^{-1}\left( P\cdot \frac{\mathrm{d}}{\mathrm{dt}}\left[ \begin{array}{c} \psi _d\\ \psi _q\\ \end{array} \right] +\frac{\mathrm{d}P}{\mathrm{dt}}\cdot \left[ \begin{array}{c} \psi _d\\ \psi _q\\ \end{array} \right] \right) [uduq]=R[idiq]+P1(Pdtd[ψdψq]+dtdP[ψdψq])

⇒ [ u d u q ] = R [ i d i q ] + P − 1 P ⋅ d d t [ ψ d ψ q ] + P − 1 d P d t ⋅ [ ψ d ψ q ] \Rightarrow \left[ \begin{array}{c} u_d\\ u_q\\ \end{array} \right] =R\left[ \begin{array}{c} i_d\\ i_q\\ \end{array} \right] +P^{-1}P\cdot \frac{\mathrm{d}}{\mathrm{dt}}\left[ \begin{array}{c} \psi _d\\ \psi _q\\ \end{array} \right] +P^{-1}\frac{\mathrm{d}P}{\mathrm{dt}}\cdot \left[ \begin{array}{c} \psi _d\\ \psi _q\\ \end{array} \right] [uduq]=R[idiq]+P1Pdtd[ψdψq]+P1dtdP[ψdψq]


⇒ [ u d u q ] = R [ i d i q ] + d d t [ ψ d ψ q ] + [ cos ⁡ θ e sin ⁡ θ e − sin ⁡ θ e cos ⁡ θ e ] [ − sin ⁡ θ e − cos ⁡ θ e cos ⁡ θ e − sin ⁡ θ e ] d θ e d t [ ψ d ψ q ] \Rightarrow \left[ \begin{array}{c} u_d\\ u_q\\ \end{array} \right] =R\left[ \begin{array}{c} i_d\\ i_q\\ \end{array} \right] +\frac{\mathrm{d}}{\mathrm{dt}}\left[ \begin{array}{c} \psi _d\\ \psi _q\\ \end{array} \right] +\left[ \begin{matrix} \cos \theta _e& \sin \theta _e\\ -\sin \theta _e& \cos \theta _e\\ \end{matrix} \right] \left[ \begin{matrix} -\sin \theta _e& -\cos \theta _e\\ \cos \theta _e& -\sin \theta _e\\ \end{matrix} \right] \frac{\mathrm{d}\theta _e}{\mathrm{dt}}\left[ \begin{array}{c} \psi _d\\ \psi _q\\ \end{array} \right] [uduq]=R[idiq]+dtd[ψdψq]+[cosθesinθesinθecosθe][sinθecosθecosθesinθe]dtdθe[ψdψq]


⇒ [ u d u q ] = R [ i d i q ] + d d t [ ψ d ψ q ] + [ 0 − 1 1 0 ] ω e [ ψ d ψ q ] (逆向推导的起点) \Rightarrow \left[ \begin{array}{c} u_d\\ u_q\\ \end{array} \right] =R\left[ \begin{array}{c} i_d\\ i_q\\ \end{array} \right] +\frac{\mathrm{d}}{\mathrm{dt}}\left[ \begin{array}{c} \psi _d\\ \psi _q\\ \end{array} \right] +\left[ \begin{matrix} 0& -1\\ 1& 0\\ \end{matrix} \right] \omega _e\left[ \begin{array}{c} \psi _d\\ \psi _q\\ \end{array} \right] \text{(逆向推导的起点)} [uduq]=R[idiq]+dtd[ψdψq]+[0110]ωe[ψdψq](逆向推导的起点)


处理上式,得到常见的矩阵形式 \text{处理上式,得到常见的矩阵形式} 处理上式,得到常见的矩阵形式


[ u d u q ] = R [ i d i q ] + d d t [ ψ d ψ q ] + ω e [ − ψ q ψ d ] \left[ \begin{array}{c} u_d\\ u_q\\ \end{array} \right] =R\left[ \begin{array}{c} i_d\\ i_q\\ \end{array} \right] +\frac{\mathrm{d}}{\mathrm{dt}}\left[ \begin{array}{c} \psi _d\\ \psi _q\\ \end{array} \right] +\omega _e\left[ \begin{array}{c} -\psi _q\\ \psi _d\\ \end{array} \right] [uduq]=R[idiq]+dtd[ψdψq]+ωe[ψqψd]


(若想从旋转坐标系推到两相静止坐标系,建议用倒数第二步的公式作为式子(1)展开推导,推导过程中把握好坐标变换就行了)

参考资料
【1】https://blog.csdn.net/HUST_EE_YF/article/details/84023690
【2】现代电机控制技术,第二版,王成元著,P127,公式3-23至3-34

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值