本文解决电压方程在静止坐标系与运动坐标系转换问题。本文将呈现的转换关系是电压方程由静止坐标系转换至运动坐标系,反之同理可证。
证明开始
[ u α u β ] = R [ i α i β ] + d d t [ ψ α ψ β ] ( 1 ) \left[ \begin{array}{c} u_{\alpha}\\ u_{\beta}\\ \end{array} \right] =R\left[ \begin{array}{c} i_{\alpha}\\ i_{\beta}\\ \end{array} \right] +\frac{\mathrm{d}}{\mathrm{dt}}\left[ \begin{array}{c} \psi _{\alpha}\\ \psi _{\beta}\\ \end{array} \right] \left( 1 \right) [uαuβ]=R[iαiβ]+dtd[ψαψβ](1)
P 2 r / 2 s = [ cos θ e − sin θ e sin θ e cos θ e ] ( 推导过程中记为 P ,正交矩阵的逆阵等于其转置 ) P_{2r/2s}=\left[ \begin{matrix} \cos \theta _e& -\sin \theta _e\\ \sin \theta _e& \cos \theta _e\\ \end{matrix} \right] \left( \text{推导过程中记为}P\text{,正交矩阵的逆阵等于其转置} \right) P2r/2s=[cosθesinθe−sinθecosθe](推导过程中记为P,正交矩阵的逆阵等于其转置)
P − 1 = [ cos θ e sin θ e − sin θ e cos θ e ] , d P d θ e = [ − sin θ e − cos θ e cos θ e − sin θ e ] , [ f α f β ] = P [ f d f q ] P^{-1}=\left[ \begin{matrix} \cos \theta _e& \sin \theta _e\\ -\sin \theta _e& \cos \theta _e\\ \end{matrix} \right] ,\frac{\mathrm{d}P}{\mathrm{d\theta_e}}=\left[ \begin{matrix} -\sin \theta _e& -\cos \theta _e\\ \cos \theta _e& -\sin \theta _e\\ \end{matrix} \right] \text{,}\left[ \begin{array}{c} f_{\alpha}\\ f_{\beta}\\ \end{array} \right] =P\left[ \begin{array}{c} f_d\\ f_q\\ \end{array} \right] P−1=[cosθe−sinθesinθecosθe],dθedP=[−sinθecosθe−cosθe−sinθe],[fαfβ]=P[fdfq]
式子
(
1
)
⇒
P
[
u
d
u
q
]
=
R
P
[
i
d
i
q
]
+
d
d
t
{
P
[
ψ
d
ψ
q
]
}
\text{式子}\left( 1 \right) \Rightarrow P\left[ \begin{array}{c} u_d\\ u_q\\ \end{array} \right] =RP\left[ \begin{array}{c} i_d\\ i_q\\ \end{array} \right] +\frac{\mathrm{d}}{\mathrm{dt}}\left\{ P\left[ \begin{array}{c} \psi _d\\ \psi _q\\ \end{array} \right] \right\}
式子(1)⇒P[uduq]=RP[idiq]+dtd{P[ψdψq]}
上式两边同乘以
P
−
1
,
\text{上式两边同乘以}P^{-1}\text{,}
上式两边同乘以P−1,
⇒
[
u
d
u
q
]
=
R
[
i
d
i
q
]
+
P
−
1
d
d
t
{
P
[
ψ
d
ψ
q
]
}
\Rightarrow \left[ \begin{array}{c} u_d\\ u_q\\ \end{array} \right] =R\left[ \begin{array}{c} i_d\\ i_q\\ \end{array} \right] +P^{-1}\frac{\mathrm{d}}{\mathrm{dt}}\left\{ P\left[ \begin{array}{c} \psi _d\\ \psi _q\\ \end{array} \right] \right\}
⇒[uduq]=R[idiq]+P−1dtd{P[ψdψq]}
⇒
[
u
d
u
q
]
=
R
[
i
d
i
q
]
+
P
−
1
(
P
⋅
d
d
t
[
ψ
d
ψ
q
]
+
d
P
d
t
⋅
[
ψ
d
ψ
q
]
)
\Rightarrow \left[ \begin{array}{c} u_d\\ u_q\\ \end{array} \right] =R\left[ \begin{array}{c} i_d\\ i_q\\ \end{array} \right] +P^{-1}\left( P\cdot \frac{\mathrm{d}}{\mathrm{dt}}\left[ \begin{array}{c} \psi _d\\ \psi _q\\ \end{array} \right] +\frac{\mathrm{d}P}{\mathrm{dt}}\cdot \left[ \begin{array}{c} \psi _d\\ \psi _q\\ \end{array} \right] \right)
⇒[uduq]=R[idiq]+P−1(P⋅dtd[ψdψq]+dtdP⋅[ψdψq])
⇒ [ u d u q ] = R [ i d i q ] + P − 1 P ⋅ d d t [ ψ d ψ q ] + P − 1 d P d t ⋅ [ ψ d ψ q ] \Rightarrow \left[ \begin{array}{c} u_d\\ u_q\\ \end{array} \right] =R\left[ \begin{array}{c} i_d\\ i_q\\ \end{array} \right] +P^{-1}P\cdot \frac{\mathrm{d}}{\mathrm{dt}}\left[ \begin{array}{c} \psi _d\\ \psi _q\\ \end{array} \right] +P^{-1}\frac{\mathrm{d}P}{\mathrm{dt}}\cdot \left[ \begin{array}{c} \psi _d\\ \psi _q\\ \end{array} \right] ⇒[uduq]=R[idiq]+P−1P⋅dtd[ψdψq]+P−1dtdP⋅[ψdψq]
⇒ [ u d u q ] = R [ i d i q ] + d d t [ ψ d ψ q ] + [ cos θ e sin θ e − sin θ e cos θ e ] [ − sin θ e − cos θ e cos θ e − sin θ e ] d θ e d t [ ψ d ψ q ] \Rightarrow \left[ \begin{array}{c} u_d\\ u_q\\ \end{array} \right] =R\left[ \begin{array}{c} i_d\\ i_q\\ \end{array} \right] +\frac{\mathrm{d}}{\mathrm{dt}}\left[ \begin{array}{c} \psi _d\\ \psi _q\\ \end{array} \right] +\left[ \begin{matrix} \cos \theta _e& \sin \theta _e\\ -\sin \theta _e& \cos \theta _e\\ \end{matrix} \right] \left[ \begin{matrix} -\sin \theta _e& -\cos \theta _e\\ \cos \theta _e& -\sin \theta _e\\ \end{matrix} \right] \frac{\mathrm{d}\theta _e}{\mathrm{dt}}\left[ \begin{array}{c} \psi _d\\ \psi _q\\ \end{array} \right] ⇒[uduq]=R[idiq]+dtd[ψdψq]+[cosθe−sinθesinθecosθe][−sinθecosθe−cosθe−sinθe]dtdθe[ψdψq]
⇒ [ u d u q ] = R [ i d i q ] + d d t [ ψ d ψ q ] + [ 0 − 1 1 0 ] ω e [ ψ d ψ q ] (逆向推导的起点) \Rightarrow \left[ \begin{array}{c} u_d\\ u_q\\ \end{array} \right] =R\left[ \begin{array}{c} i_d\\ i_q\\ \end{array} \right] +\frac{\mathrm{d}}{\mathrm{dt}}\left[ \begin{array}{c} \psi _d\\ \psi _q\\ \end{array} \right] +\left[ \begin{matrix} 0& -1\\ 1& 0\\ \end{matrix} \right] \omega _e\left[ \begin{array}{c} \psi _d\\ \psi _q\\ \end{array} \right] \text{(逆向推导的起点)} ⇒[uduq]=R[idiq]+dtd[ψdψq]+[01−10]ωe[ψdψq](逆向推导的起点)
处理上式,得到常见的矩阵形式 \text{处理上式,得到常见的矩阵形式} 处理上式,得到常见的矩阵形式
[ u d u q ] = R [ i d i q ] + d d t [ ψ d ψ q ] + ω e [ − ψ q ψ d ] \left[ \begin{array}{c} u_d\\ u_q\\ \end{array} \right] =R\left[ \begin{array}{c} i_d\\ i_q\\ \end{array} \right] +\frac{\mathrm{d}}{\mathrm{dt}}\left[ \begin{array}{c} \psi _d\\ \psi _q\\ \end{array} \right] +\omega _e\left[ \begin{array}{c} -\psi _q\\ \psi _d\\ \end{array} \right] [uduq]=R[idiq]+dtd[ψdψq]+ωe[−ψqψd]
(若想从旋转坐标系推到两相静止坐标系,建议用倒数第二步的公式作为式子(1)展开推导,推导过程中把握好坐标变换就行了)
参考资料
【1】https://blog.csdn.net/HUST_EE_YF/article/details/84023690
【2】现代电机控制技术,第二版,王成元著,P127,公式3-23至3-34