[scRNA-seq]单细胞转录因子分析——SCENIC实操示例

本文介绍了如何使用pySCENIC进行单细胞转录因子分析,包括安装、文件准备和SCENIC分析的三个步骤。通过命令行运行pySCENIC,分析10x数据,grn、cistarget和AUCell的计算分别需要不同时间。在实际操作中可能会遇到文件格式问题,但更换服务器或环境可解决。分析完成后,可进一步处理结果文件以生成所需图表。
摘要由CSDN通过智能技术生成

之前的文章我们写到了用SCENIC对单细胞RNA测序数据进行转录因子分析的原理:[scRNA-seq]单细胞转录因子分析——SCENIC算法简析。在这篇推送中,我们就用数据实例来展示如何得到SCENIC分析结果。

SCENIC有R的版本,通过SCENIC实现。在http://htmlpreview.github.io/?https://github.com/aertslab/SCENIC/blob/master/inst/doc/SCENIC_Setup.html、http://htmlpreview.github.io/?https://github.com/aertslab/SCENIC/blob/master/inst/doc/SCENIC_Running.html网址中有详细的讲解。

但是SCENIC整个算法的计算量都比较大,如果使用R来获得结果,需要非常长的时间。一个10x的样本就需要计算两天左右,当数据量增多时,使用R版本就显得不太现实。因此,SCENIC的作者还开发了对应的python版本,名为pySCENIC。

使用pySCENIC分析,我们可以通过运行python代码,调用函数获得分析结果,也可以直接使用命令行、输入不同的参数得到结果。因为使用命令行更为直接了当,在这,我们就来看看怎么用命令行获得SCENIC的分析结果。

安装及文件准备

pySCENIC的安装较为简单,只需要在系统输入一下命令行,即可安装。详细信息可见https://pyscenic.readthedocs.io/en/late

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值