Lyapunov稳定性分析2(连续时间系统)
**注:**Lyapunov稳定性理论主要内容: 李雅普诺夫第一方法和 第二方法,本篇文章只分析 线性系统稳定性, 非线性系统稳定性将单独写文章进行分析!敬请关注,谢谢~
一、李雅普诺夫第一方法(间接法)
线性系统,只须求出系数矩阵的特征值即可判断其稳定性(见作者”控制系统分析1(线性系统稳定性和收敛性)”博客);
非线性系统,则由若干过程组成,其中每个过程都要用到具体的形式。由系统的动态方程来找出其一次近似的线性化方程,在通过对线性化方程的稳定性的分析而给出原非线性系统在小范围内稳定性的有关信息。
二、李雅普诺夫第二方法(直接法)
李雅普诺夫第二方法:又称直接法, 不需要引入线性近似,而直接由系统的运动方程出发,通过构造一个类似于能量的Lyapunov函数,并分析它和其一次导数的定号性而获得系统稳定性的有关信息
能量函数:状态和时间的标量函数,又称为李雅普诺夫函数,记作V(x,t)。
三、李雅普诺夫稳定性判定(连续时间系统)
3.1 Lyapunov渐近稳定的充要条件(第一方法):
定理:
某一线性时不变系统:
如果系统矩阵A的特征值全部在左半平面,即特征值都小于0,即A的所有特征值都具有负实部,则系统的平衡状态 xe 是渐近稳定的。
3.2 举例:MATLAB判断系统稳定性(Lyapunov第一方法)
A=[-3