切向量,切空间,余切空间习题

  1. Prove that the tangent space T p M T_pM TpM is an n-dimensional vector space by showing that
    the tangent vectors { ∂ ∂ x i ∣ p } 1 ≤ i ≤ n \{\frac{\partial}{\partial x^i}\big|_p\}_{1\leq i \leq n} {xip}1in forms a basis.

Proof: \textbf{Proof:} Proof:

We know that T p M T_pM TpM is the functional space: { X p ∣ X p  is linear funcitonal on  C ∞ ( M )  satisfies Leibniz rule } \{X_p|X_p \text{ is linear funcitonal on }C^{\infty}(M) \text{ satisfies Leibniz rule}\} {XpXp is linear funcitonal on C(M) satisfies Leibniz rule} only need to show it has a finite basis.

∀ f ∈ C ∞ ( M ) \forall f\in C^{\infty}(M) fC(M), we have a general Taylor’s formula with remainder:
f ( x ) = f ( p ) + ( x i − p i ) ∂ f ∂ x i + g ( x ) , x ∈ M f(x)=f(p)+(x^i-p^i)\frac{\partial f}{\partial x^i}+g(x), x\in M f(x)=f(p)+(xipi)xif+g(x),xM
X p ( g ) = 0 , X p ( c ) = 0 , ∀ c ∈ R X_p(g)=0,X_p(c)=0,\forall c\in \mathbb{R} Xp(g)=0,Xp(c)=0,cR, since p p p is second order root of g ( x ) g(x) g(x) and X p X_p Xp satisfies Leibniz rule.
Thus, X p ( f ) = X p ( ( x i − p i ) ∂ f ∂ x i ) = X p ( x i ) ∂ ∂ x i ∣ p ⋅ f X_p(f)=X_p((x^i-p^i)\frac{\partial f}{\partial x^i})=X_p(x^i)\frac{\partial}{\partial x^i}|_p\cdot f Xp(f)=Xp((xipi)xif)=Xp(xi)xipf i.e. X p = X p ( x i ) ∂ ∂ x i ∣ p X_p=X_p(x^i)\frac{\partial}{\partial x^i}|_p Xp=Xp(xi)xip, which means that X p X_p Xp can be represented in a linear combination of { ∂ ∂ x i ∣ p } 1 ≤ i ≤ n \{\frac{\partial}{\partial x^i}\big|_p\}_{1\leq i \leq n} {xip}1in, and the coefficient is X p ( x i ) X_p(x^i) Xp(xi).

Next, we need to show { ∂ ∂ x i ∣ p } 1 ≤ i ≤ n \{\frac{\partial}{\partial x^i}\big|_p\}_{1\leq i \leq n} {xip}1in is linear independent:

Suppose a i ∂ ∂ x i ∣ p = 0 a_i \frac{\partial}{\partial x^i}\big|_p=\textbf{0} aixip=0, then a i ∂ ∂ x i ∣ p ⋅ x j = a i δ i j = a j = 0 , ∀ 1 ≤ j ≤ n a_i \frac{\partial}{\partial x^i}\big|_p \cdot x^j=a_i \delta_{ij}=a_j=0, \forall 1\leq j\leq n aixipxj=aiδij=aj=0,1jn.

Thus T p M T_pM TpM is an n-dimensional vector space, with basis { ∂ ∂ x i ∣ p } 1 ≤ i ≤ n \{\frac{\partial}{\partial x^i}\big|_p\}_{1\leq i \leq n} {xip}1in.\
 
 
 

  1. Let { v i } i = 1 n ⊂ T p M \{v_i\}^n_{i=1}\subset T_pM {vi}i=1nTpM be a basis of tangent vectors at p p p. Show that there is a local chart ( U , φ ; x i ) (U,\varphi;x^i) (U,φ;xi) around p p p such that
    v i = ∂ ∂ x i ∣ p , i = 1 , … , n . v_i=\frac{\partial}{\partial x^i}\big|_p, i=1,\dots, n. vi=xip,i=1,,n.

Proof: \textbf{Proof:} Proof:

Here we define { v i } i = 1 n \{v_i\}^n_{i=1} {vi}i=1n as the equivalent relation of curves on M M M, marked v i : = [ v i ] v_i:=[v_i] vi:=[vi]. Suppose these is define under ( U , ϕ ) (U,\phi) (U,ϕ).

Then since { v i } i = 1 n ⊂ T p M \{v_i\}^n_{i=1}\subset T_pM {vi}i=1nTpM is a basis, we know ( [ v i ] ⋅ ϕ 1 , … , [ v i ] ⋅ ϕ n ) ([v_i]\cdot \phi^1,\dots,[v_i]\cdot \phi^n) ([vi]ϕ1,,[vi]ϕn) is linear independent ∀ 1 ≤ i ≤ n \forall 1\leq i\leq n 1in, also we have addition and production on T p M T_pM TpM, i.e. we can represent the operator in matrix form, and thus A A A is invertible:
( [ v 1 ] [ v 2 ] ⋮ [ v n ] ) ⋅ ( ϕ 1 ϕ 2 … ϕ n ) = A \begin{pmatrix} [v_1]\\ [v_2]\\ \vdots \\ [v_n]\\ \end{pmatrix} \cdot \begin{pmatrix} \phi^1 & \phi^2 & \dots & \phi^n \end{pmatrix} =A [v1][v2][vn](ϕ1ϕ2ϕn)=A
Then we can take A − 1 A^{-1} A1 on both sides:
( [ v 1 ] [ v 2 ] ⋮ [ v n ] ) ⋅ ( ( ϕ 1 ϕ 2 … ϕ n ) ⋅ A − 1 ) = I \begin{pmatrix} [v_1]\\ [v_2]\\ \vdots \\ [v_n]\\ \end{pmatrix} \cdot \Big(\begin{pmatrix} \phi^1 & \phi^2 & \dots & \phi^n \end{pmatrix} \cdot A^{-1} \Big) =I [v1][v2][vn]((ϕ1ϕ2ϕn)A1)=I
Since ϕ \phi ϕ is a local chart, we know the linear combination of ϕ i \phi^i ϕi is still a local chart: ( U , φ ) (U,\varphi) (U,φ), where φ = ( ϕ 1 ϕ 2 … ϕ n ) ⋅ A − 1 \varphi=\begin{pmatrix} \phi^1 & \phi^2 & \dots & \phi^n \end{pmatrix} \cdot A^{-1} φ=(ϕ1ϕ2ϕn)A1. And φ \varphi φ satisfies that φ j ∘ v i = δ i j t \varphi^j\circ v_i=\delta_{ij}t φjvi=δijt.

Thus, by definition on ( U , φ ) (U,\varphi) (U,φ), we have v i = ∂ ∂ x i ∣ p , i = 1 , … , n v_i=\frac{\partial}{\partial x^i}\big|_p, i=1,\dots, n vi=xip,i=1,,n.\
 
 
 

  1. Show that the cotangent space T p ∗ M T_p^*M TpM is an n-dimensional vector space by showing that { d x i ∣ p } ⊂ T p ∗ M \{dx^i|_p\}\subset T_p^*M {dxip}TpM forms a basis. Moreover, T p ∗ M T_p^*M TpM is the dual space of the tangent space T p M T_pM TpM.

Proof: \textbf{Proof:} Proof:

First, claim that on a local chart ( U , ϕ ) (U, \phi) (U,ϕ), ∀ f ∈ C ∞ ( M ) \forall f\in C^{\infty}(M) fC(M), d f ∣ p = ∂ ∂ x i ( f ∘ ϕ − 1 ) d x i ∣ p df|_p=\frac{\partial}{\partial x^i}(f\circ\phi^{-1})dx^i|_p dfp=xi(fϕ1)dxip.

Set v i = ∂ ∂ x i ( f ∘ ϕ − 1 ) v_i=\frac{\partial}{\partial x^i}(f\circ\phi^{-1}) vi=xi(fϕ1), then we need to show d f ∣ p = d v i x i df|_p=dv_ix^i dfp=dvixi.
i.e. f ∼ v i x i f\sim v_ix^i fvixi    ⟺    \iff ∂ ∂ x j ( f ∘ ϕ − 1 ) = ∂ ∂ x j ⋅ v i x i \frac{\partial}{\partial x^j}(f\circ\phi^{-1})=\frac{\partial}{\partial x^j}\cdot v_ix^i xj(fϕ1)=xjvixi, by the definition of ∂ ∂ x i ∣ p ⋅ \frac{\partial}{\partial x^i}|_p\cdot xip we know that the latter equals v j = L H S v_j=LHS vj=LHS.

Thus, the claim is proved. Before we show { d x i ∣ p } , i = 1 , … , n \{dx^i|_p\}, i=1,\dots,n {dxip},i=1,,n is linear independent, I prefer to show T p ∗ M T_p^*M TpM is the dual space of the tangent space T p M T_pM TpM:

which is equivalent to show T p ∗ M = ( T p M ) ∗ T_p^*M=(T_pM)^* TpM=(TpM), i.e. ∀ [ f ] p ∈ T p ∗ M \forall [f]_p\in T_p^*M [f]pTpM, it can be realized a linear function on T p M T_pM TpM. Define d f ∣ p : T p M → R 1 , [ γ ] p ↦ ( d f ∣ p , [ γ ] p ) : = d d t ∣ t = 0 ( f ∘ γ ) df|_p:T_pM\rightarrow \mathbb{R}^1, [\gamma]_p\mapsto (df|_p, [\gamma]_p):=\frac{d}{dt}\big|_{t=0} (f\circ \gamma) dfp:TpMR1,[γ]p(dfp,[γ]p):=dtdt=0(fγ).

Then we need to show linearity: ∀ d f ∣ p , d g ∣ p ∈ T p ∗ M , a , b ∈ R 1 \forall df|_p,dg|_p\in T_p^*M,a,b\in\mathbb{R}^1 dfp,dgpTpM,a,bR1, for a ⋅ d f ∣ p + b ⋅ d g ∣ p a\cdot df|_p+b\cdot dg|_p adfp+bdgp
a ⋅ d ( f ∘ ϕ − 1 ) p + b ⋅ d ( g ∘ ϕ − 1 ) p = d ( ( a f + b g ) ∘ ϕ − 1 ) ∣ p a\cdot d(f\circ \phi^{-1})_p+b\cdot d(g\circ \phi^{-1})_p=d\big((af+bg)\circ \phi^{-1})|_p ad(fϕ1)p+bd(gϕ1)p=d((af+bg)ϕ1)p, follows the linearity of C ∞ ( M ) C^{\infty}(M) C(M). Thus we can define
a ⋅ d f ∣ p + b ⋅ d g ∣ p = d ( ( a f + b g ) ∘ ϕ − 1 ) ∣ p a\cdot df|_p+b\cdot dg|_p=d\big((af+bg)\circ \phi^{-1})|_p adfp+bdgp=d((af+bg)ϕ1)p

Thus, T p ∗ M = ( T p M ) ∗ T_p^*M=(T_pM)^* TpM=(TpM).

Finally, it’s time to show the linear independent of { d x i ∣ p } \{dx^i|_p\} {dxip}: suppose a i d x i ∣ p = 0 a_idx^i|_p=\textbf{0} aidxip=0, act [ γ j ] [\gamma^j] [γj] both sides,
a i ⋅ ( d x i ∣ p , [ γ j ] ) = a i δ i j = a j = 0. a_i\cdot (dx^i|_p, [\gamma^j])=a_i\delta_{ij}=a_j=0. ai(dxip,[γj])=aiδij=aj=0.
Thus, { d x i ∣ p } , i = 1 , … , n \{dx^i|_p\}, i=1,\dots,n {dxip},i=1,,n is linear independent.

Moreover, ( d x i , ∂ ∂ x j ∣ p ) = ( d x i , [ γ j ] ) = d d t ∣ t = 0 ( x i ∘ γ j ) = δ i j (dx^i,\frac{\partial}{\partial x^j}\big|_p)=(dx^i, [\gamma^j])=\frac{d}{dt}\big|_{t=0} (x^i\circ \gamma^j)=\delta_{ij} (dxi,xjp)=(dxi,[γj])=dtdt=0(xiγj)=δij. This suggests that { d x i ∣ p } \{dx^i|_p\} {dxip} is the dual basis of ( T p M ) ∗ (T_pM)^* (TpM).\
 
 
 

  1. Show that under a change of local charts, the natural basis of the cotangent space T p ∗ M T_p^*M TpM transforms by
    d x i ∣ p = ∂ x i ∂ y j ( y 0 ) d y j ∣ p . dx^i|_p=\frac{\partial x^i}{\partial y^j}(y_0)dy^j|_p. dxip=yjxi(y0)dyjp.

Proof: \textbf{Proof:} Proof:
Suppose we have two local charts: ( U , ϕ ; x i ) , ( V , φ ; y i ) (U,\phi;x^i),(V,\varphi;y^i) (U,ϕ;xi),(V,φ;yi), thus we have two basis: { d x i ∣ p } , { d y i ∣ p } ⊂ T p ∗ M \{dx^i|_p\}, \{dy^i|_p\}\subset T^*_pM {dxip},{dyip}TpM, ∀ d x i \forall dx^i dxi, we can represent it with { d y i ∣ p } \{dy^i|_p\} {dyip} : d x i ∣ p = a k d y k ∣ p dx^i|_p=a_kdy^k|_p dxip=akdykp.

By the result of partial derivative on different local charts, we know
∂ ∂ y l ∣ p = ∂ x j ∂ y l ( y 0 ) ∂ ∂ x j ∣ p \frac{\partial}{\partial y^l}\big|_p=\frac{\partial x^j}{\partial y^l}(y_0) \frac{\partial}{\partial x^j}\big|_p ylp=ylxj(y0)xjp
act on d x i ∣ p dx^i|_p dxip, also note that ( d x i , ∂ ∂ x j ∣ p ) = δ i j (dx^i,\frac{\partial}{\partial x^j}\big|_p)=\delta_{ij} (dxi,xjp)=δij:
d x i ( ∂ ∂ y l ∣ p ) = d x i ( ∂ x j ∂ y l ( y 0 ) ∂ ∂ x j ∣ p ) = ∂ x j ∂ y l δ i j = ∂ x i ∂ y l = a k d y k ( ∂ ∂ y l ∣ p ) = a l dx^i(\frac{\partial}{\partial y^l}\big|_p)=dx^i(\frac{\partial x^j}{\partial y^l}(y_0) \frac{\partial}{\partial x^j}\big|_p)=\frac{\partial x^j}{\partial y^l}\delta_{ij}=\frac{\partial x^i}{\partial y^l}=a_kdy^k(\frac{\partial}{\partial y^l}\big|_p)=a_l dxi(ylp)=dxi(ylxj(y0)xjp)=ylxjδij=ylxi=akdyk(ylp)=al
thus, we know a k = ∂ x i ∂ y k a_k=\frac{\partial x^i}{\partial y^k} ak=ykxi
therefore,
d x i ∣ p = ∂ x i ∂ y k d y k ∣ p dx^i|_p=\frac{\partial x^i}{\partial y^k}dy^k|_p dxip=ykxidykp

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值