切向量,切空间,余切空间习题

  1. Prove that the tangent space T p M T_pM TpM is an n-dimensional vector space by showing that
    the tangent vectors { ∂ ∂ x i ∣ p } 1 ≤ i ≤ n \{\frac{\partial}{\partial x^i}\big|_p\}_{1\leq i \leq n} { xip}1in forms a basis.

Proof: \textbf{Proof:} Proof:

We know that T p M T_pM TpM is the functional space: { X p ∣ X p  is linear funcitonal on  C ∞ ( M )  satisfies Leibniz rule } \{X_p|X_p \text{ is linear funcitonal on }C^{\infty}(M) \text{ satisfies Leibniz rule}\} { XpXp is linear funcitonal on C(M) satisfies Leibniz rule} only need to show it has a finite basis.

∀ f ∈ C ∞ ( M ) \forall f\in C^{\infty}(M) fC(M), we have a general Taylor’s formula with remainder:
f ( x ) = f ( p ) + ( x i − p i ) ∂ f ∂ x i + g ( x ) , x ∈ M f(x)=f(p)+(x^i-p^i)\frac{\partial f}{\partial x^i}+g(x), x\in M f(x)=f(p)+(xipi)xif+g(x),xM
X p ( g ) = 0 , X p ( c ) = 0 , ∀ c ∈ R X_p(g)=0,X_p(c)=0,\forall c\in \mathbb{R} Xp(g)=0,Xp(c)=0,cR, since p p p is second order root of g ( x ) g(x) g(x) and X p X_p Xp satisfies Leibniz rule.
Thus, X p ( f ) = X p ( ( x i − p i ) ∂ f ∂ x i ) = X p ( x i ) ∂ ∂ x i ∣ p ⋅ f X_p(f)=X_p((x^i-p^i)\frac{\partial f}{\partial x^i})=X_p(x^i)\frac{\partial}{\partial x^i}|_p\cdot f Xp(f)=Xp((xipi)xif)=Xp(xi)xipf i.e. X p = X p ( x i ) ∂ ∂ x i ∣ p X_p=X_p(x^i)\frac{\partial}{\partial x^i}|_p Xp=Xp(xi)xip, which means that X p X_p Xp can be represented in a linear combination of { ∂ ∂ x i ∣ p } 1 ≤ i ≤ n \{\frac{\partial}{\partial x^i}\big|_p\}_{1\leq i \leq n} { xip}1in, and the coefficient is X p ( x i ) X_p(x^i) Xp(xi).

Next, we need to show { ∂ ∂ x i ∣ p } 1 ≤ i ≤ n \{\frac{\partial}{\partial x^i}\big|_p\}_{1\leq i \leq n} { xip}1in is linear independent:

Suppose a i ∂ ∂ x i ∣ p = 0 a_i \frac{\partial}{\partial x^i}\big|_p=\textbf{0} aixip=0, then a i ∂ ∂ x i ∣ p ⋅ x j = a i δ i j = a j = 0 , ∀ 1 ≤ j ≤ n a_i \frac{\partial}{\partial x^i}\big|_p \cdot x^j=a_i \delta_{ij}=a_j=0, \forall 1\leq j\leq n aixipxj=aiδij=aj=0,1jn.

Thus T p M T_pM TpM is an n-dimensional vector space, with basis {

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值