数据分析的价值
-
数据衡量业务:通过管理数据报表,可以快速衡量业务发展状态。
-
数据洞察业务:通过数据分析,可以找到业务发展的机遇。
-
数据驱动指导业务:基于数据,驱动业务决策,数据支撑决策。
数据分析的流程
-
明确主题:明确数据分析的目标。
-
提出假设:从不同角度提出假设,有假设才有数据分析思路。
-
验证假设:基于假设去观察、研究、判断,去验证假设是否正确。
-
得出结论:不停提出假设,不断验证假设、修正假设,发现现象背后真正的原因,最终获得结论。
数据分析要点
方法工具
通过以下方法工具对数据进行提取、清洗、处理、分析等。
-
统计学常识。
-
SQL语句:数据查询与提取。
-
Excel类:数据透视表、函数和公式、图表功能、VBA和宏等。
-
统计分析:Spark、SAS、Stata、Eviews、Pyecharts等。
-
BI可视化:Power BI、Fine BI、Smart BI、Quick BI等。
-
编码软件:R、Python等。
数据分析报告
报告编写要点
-
背景以及目的:描写报告的业务背景,向受众说明报告价值所在。
-
数据来源:注明数据来源,提高可信度。
-
数据展示:数据文字合理的排版,呈现可视化效果。
-
数据分析:解释数据指标背后的业务含义。
-
输出结论:有结论的分析才有意义。
-
建议:根据结论提出相应的建议。
排版美化
合理应用数字、文字、图表、色彩等进行可视化,让数据分析报告条理清晰、逻辑缜密,易读且美观,显得更加专业。
-
突出关键信息:
-
通过颜色:可以使用不同的颜色来区分不同的数据点或类别。
-
通过大小:如散点图。
-
通过形状:如饼图扇形区域。
-
-
保持简洁性:
-
避免过多的图表和数据:过多的图表和数据会让读者感到混乱和难以理解。
-
突出重点信息:突出重要的信息和数据点,使读者能够快速地识别出关键的信息。
-
-
布局合理:
-
遵循视觉扫码顺序:从上到下、从左到右。
-
合理安排图表的位置和大小:使报告整体布局美观、协调。
-
注意页面的空白和留白:避免拥挤和压抑,使报告更加清晰、易读。
-
-
使用一致的字体和颜色:
-
选择清晰易读的字体。
-
使用一致的颜色方案。
-
-
必要的解释和说明:
-
复杂的图表和数据:在图表旁边添加注释或解释性文本,帮助读者更好地理解报告内容。
-