笔记-Itô型随机Markov跳变系统相关的稳定性理论

Itô型随机Markov跳变系统相关的稳定性理论

非线性系统

定义1: 对于一个正定函数 V ( x ( t ) , η t , t ) V(x(t), \eta_t, t) V(x(t),ηt,t),其Markovian无穷小算子 L \mathcal{L} L 定义为:
L V ( x ( t ) , η t , t ) = lim ⁡ Δ → 0 1 Δ [ E { V ( x ( t ) , η t , t ) ∣ x ( t − ) , η t − , t − } − V ( x ( t − ) , η t − , t − ) ] \mathcal{L} V(x(t), \eta_t, t) = \lim_{\Delta \rightarrow 0} \frac{1}{\Delta} \left[ \mathbb{E} \left \{ V(x(t),\eta_t, t) \mid x(t^{-}), \eta_{t^{-}}, t^{-} \right \} - V(x(t^{-}), \eta_{t^{-}}, t^{-}) \right] LV(x(t),ηt,t)=Δ0limΔ1[E{V(x(t),ηt,t)x(t),ηt,t}V(x(t),ηt,t)]

式中, Δ = t − t − \Delta = t - t^{-} Δ=tt E \mathbb{E} E为数学期望。
以式 ( 1 ) (1) (1)所示的跳变系统动态方程为例:
x ˙ ( t ) = f ( x ( t ) , u ( t ) , η t , t ) (1) \dot{x}(t) = f(x(t), u(t), \eta_t, t) \tag{1} x˙(t)=f(x(t),u(t),ηt,t)(1)

式中,对于 ∀ η t ∈ M \forall \eta_t \in \boldsymbol{M} ηtM,若 f ( ⋅ ) f(\cdot) f()是关于 t t t x ( t ) x(t) x(t)的光滑连续函数,那么在 t t t时刻、 η t \eta_t ηt处于 k k k模态时,有:
L V ( x ( t ) , k , t ) = ∂ V ( x ( t ) , k , t ) ∂ t + ∂ V ( x ( t ) , k , t ) ∂ x f ( x ( t ) , u ( t ) , η t , t ) + ∑ p = 1 M π k p V ( x ( t ) , p , t ) (2) \mathcal{L} V(x(t), k, t) = \frac{\partial V(x(t), k, t)}{\partial t} + \frac{\partial V(x(t), k, t)}{\partial x} f(x(t), u(t), \eta_t, t) + \sum_{p=1}^M \pi_{kp} V(x(t), p, t) \tag{2} LV(x(t),k,t)=tV(x(t),k,t)+xV(x(t),k,t)f(x(t),u(t),ηt,t)+p=1MπkpV(x(t),p,t)(2)

式中, ∂ V ( x ( t ) , k , t ) ∂ t \frac{\partial V(x(t), k, t)}{\partial t} tV(x(t),k,t) ∂ V ( x ( t ) , k , t ) ∂ x \frac{\partial V(x(t), k, t)}{\partial x} xV(x(t),k,t)分别表示函数 V ( x ( t ) , k , t ) V(x(t), k, t) V(x(t),k,t) ( x ( t ) , k , t ) (x(t), k, t) (x(t),k,t)处对 t t t x ( t ) x(t) x(t)的偏导数。

定义2: 针对跳变系统 ( 1 ) (1) (1),假设存在正常数 r r r使得 ∥ x 0 ∥ < r \left \| x_0 \right \| < r x0<r,当 t 0 < t < ∞ t_0 < t < \infin t0<t<时,如果有常数 ε > 0 \varepsilon > 0 ε>0 0 ≤ δ < 1 0 \leq \delta < 1 0δ<1,使得从初始状态出发的系统状态方程的解 x ( t ) x(t) x(t)满足:
Pr ⁡ { sup ⁡ t 0 < t < ∞ ∥ x ( t , x 0 , η 0 ) ∥ ≥ ε } ≤ δ \Pr \left\{ \sup_{t_0 < t < \infin} \left \| x(t, x_0, \eta_0) \right \| \geq \varepsilon \right\} \leq \delta Pr{t0<t<supx(t,x0,η0)ε}δ

则称跳变系统 ( 1 ) (1) (1)的状态变量 x ( t ) x(t) x(t)依概率一致有界,且界为 ε \varepsilon ε。特别地,当满足 lim ⁡ t → ∞ Pr ⁡ { sup ⁡ s ≥ t 0 ∥ x ( s , x 0 , η 0 ) ∥ ≥ ε } = 0 \lim_{t \rightarrow \infin} \Pr \left\{ \sup_{s \geq t_0} \left \| x(s, x_0, \eta_0) \right \| \geq \varepsilon \right\} = 0 limtPr{supst0x(s,x0,η0)ε}=0时,称系统 ( 1 ) (1) (1)的状态变量 x ( t ) x(t) x(t)依概率1渐近稳定

定义3: 针对跳变系统 ( 1 ) (1) (1),如果存在常数 α > 0 \alpha > 0 α>0 β > 0 \beta >0 β>0,使得从初始状态出发的系统状态方程的解 x ( t ) x(t) x(t)满足:
E { ∥ x ( t , x 0 , η 0 ) ∥ p } ≤ β ∥ x 0 ∥ p e − α t \mathbb{E} \left\{ \left \| x(t, x_0, \eta_0) \right \| ^{p} \right\} \leq \beta \left \| x_0 \right \| ^{p} e^{- \alpha t} E{x(t,x0,η0)p}βx0peαt

则称跳变系统 ( 1 ) (1) (1) p p p阶矩指数稳定的。特别地,当 p = 2 p = 2 p=2时,则称系统指数均方稳定的。
定义4: 针对跳变系统 ( 1 ) (1) (1),对于从初始状态出发的系统状态方程的解满足:
Pr ⁡ { sup ⁡ t 0 < t < ∞ ∥ x ( t , x 0 , η 0 ) ∥ ≥ ε } < δ \Pr \left\{ \sup_{t_0 < t < \infin} \left \| x(t, x_0, \eta_0) \right \| \geq \varepsilon \right\} < \delta Pr{t0<t<supx(t,x0,η0)ε}<δ

则称系统是随机稳定的。


定理1: 假设跳变系统 ( 1 ) (1) (1) t ∈ [ t 0 , ∞ ) t \in \left [ t_0, \infin \right) t[t0,) 上存在唯一解,以及存在一个正定函数 V ( x ( t ) , η t , t ) V(x(t), \eta_t, t) V(x(t),ηt,t),常数 D > 0 D > 0 D>0 c > 0 c > 0 c>0,使得下式成立:
E { V ( x ( t ) , η t , t ) } ≤ D e − c ( t − t 0 ) sup ⁡ t > t 0 , ∣ x ∣ < ε V ( x ( t ) , η t , t ) → 0 ⇔ ε → 0 \mathbb{E} \left\{ V(x(t), \eta_t, t) \right\} \leq De^{-c (t - t_0)} \\ \sup_{t > t_0, |x| < \varepsilon} V(x(t), \eta_t, t) \rightarrow 0 \Leftrightarrow \varepsilon \rightarrow 0 E{V(x(t),ηt,t)}Dec(tt0)t>t0,x<εsupV(x(t),ηt,t)0ε0
那么对于任意的初始状态 x 0 x_0 x0 η 0 \eta_0 η0,系统平衡点 x = 0 x=0 x=0是依概率渐近稳定的。
备注: sup ⁡ \sup sup inf ⁡ \inf inf分别表示函数的上确界和下确界。

定理2: 假设跳变系统 ( 1 ) (1) (1) t ∈ [ t 0 , ∞ ) t \in \left [ t_0, \infin \right) t[t0,) 上存在唯一解,以及存在一个正定函数 V ( x ( t ) , η t , t ) V(x(t), \eta_t, t) V(x(t),ηt,t)和常数 d c > 0 d_c > 0 dc>0,使得下式成立:
E { V ( x ( t ) , η t , t ) } ≤ d c ε → ∞ ⇒ inf ⁡ t > t 0 , ∣ x ∣ > ε V ( x ( t ) , η t , t ) → ∞ \mathbb{E} \left\{ V(x(t), \eta_t, t) \right\} \leq d_c \\ \varepsilon \rightarrow \infin \Rightarrow \inf_{t > t_0, |x| > \varepsilon} V(x(t), \eta_t, t) \rightarrow \infin E{V(x(t),ηt,t)}dcεt>t0,x>εinfV(x(t),ηt,t)
那么对于任意的初始状态 x 0 x_0 x0 η 0 \eta_0 η0,系统的解是依概率有界的。

假设 { η t } \{ \eta_t \} {ηt}是不可约的各态历经的Markovian过程,也就是说对于 ∀ k ∈ M \forall k \in \boldsymbol{M} kM,存在唯一的平稳分布 ξ = [ ξ 1 , . . . , ξ M ] \xi = [\xi_1, ..., \xi_M] ξ=[ξ1,...,ξM]满足:
ξ k > 0 , ∑ k = 1 M ξ k = 1 and ξ Π = 0 \xi_k > 0, \quad \sum_{k = 1}^M \xi_k = 1 \quad \text{and} \quad \xi \Pi = 0 ξk>0,k=1Mξk=1andξΠ=0
对于满足式 ( 2 ) (2) (2)的正定函数 V ( x ( t ) , η t , t ) V(x(t), \eta_t, t) V(x(t),ηt,t),有下式成立:
E { V ( x ( t ) , η t , t ) } = ∑ k = 1 M E { V ( x ( t ) , η t , t ) ξ k } E { L V ( x ( t ) , η t , t ) } = ∑ k = 1 M E { L V ( x ( t ) , η t , t ) ξ k } \mathbb{E} \left\{ V(x(t), \eta_t, t) \right\} = \sum_{k=1}^{M} \mathbb{E} \left\{ V(x(t), \eta_t, t) \xi_k \right\} \\ \mathbb{E} \left\{ \mathcal{L} V(x(t), \eta_t, t) \right\} = \sum_{k=1}^{M} \mathbb{E} \left\{ \mathcal{L} V(x(t), \eta_t, t) \xi_k \right\} E{V(x(t),ηt,t)}=k=1ME{V(x(t),ηt,t)ξk}E{LV(x(t),ηt,t)}=k=1ME{LV(x(t),ηt,t)ξk}

《Markovian跳变非线性系统的自适应输出跟踪控制研究》里对控制理论相关的基础知识介绍略微优点乱,需要整理整理。

线性系统

aaa待增加

参考文献

  1. 常茹. Markovian跳变非线性系统的自适应输出跟踪控制研究. 燕山大学, 2016.
  2. 陈蓓. 随机Markov跳跃系统的滑模控制方法研究. 华东理工大学, 2013.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Leweslyh

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值