基础-Lyapunov稳定性相关的理论

Lyapunov稳定性相关的理论

在控制理论中,经常遇到的几个关键词:
稳定性:
一致性:与初始时刻无关
渐近性:时间趋于无穷
鲁棒性:
可以对上述关键词前加修饰限定词:
渐近稳定性:
一致稳定性:
全局稳定性:
指数稳定性:指数是指收敛速度
全局渐近稳定、全局渐近一致稳定,等等。
随机稳定、依概率渐近稳定,等等,以后再添加。

基本概念

非线性系统可以用下式来描述1
x ˙ = f ( x , t ) (1) \dot{\boldsymbol{x}} = f(\boldsymbol{x}, t) \tag{1} x˙=f(x,t)(1)

式中, x ∈ R n x \in \mathbb{R}^n xRn为状态向量, f ∈ R n f \in \mathbb{R}^n fRn是非线性函数。初始条件为 x ( t 0 ) = x 0 \boldsymbol{x} (t_0) = \boldsymbol{x}_0 x(t0)=x0.
自治系统是指非线性系统的参数不显含时间变量 t t t。考虑如下的一个自治系统:
x ˙ = f ( x ) (2) \dot{\boldsymbol{x}} = f(\boldsymbol{x}) \tag{2} x˙=f(x)(2)

其中, x = ( x 1 , x 2 , . . . , x n ) T ∈ R n \boldsymbol{x} = (x_1,x_2, ..., x_n)^T \in \mathbb{R}^n x=(x1,x2,...,xn)TRn f : D → R n f:\mathbb{D} \rightarrow \mathbb{R}^n f:DRn是从定义域 D D D R n R^n Rn上的局部Lipschitz映射,满足微分方程解的唯一性。

定义1: 如果系统状态满足 x ( t ) = x ∗ \boldsymbol{x} (t) = \boldsymbol{x}^* x(t)=x,并且在该时间之后系统状态会一直在 x ∗ \boldsymbol{x}^* x处保持不变,则称 x ∗ \boldsymbol{x}^* x是系统的一个平衡点。

定义2: 给定 ∀ R > 0 \forall R > 0 R>0,如果存在 r > 0 r > 0 r>0,使得当 ∥ x ( t ) ∥ < R , t > 0 \left \| \boldsymbol{x} (t) \right \| < R, t > 0 x(t)<R,t>0,则 x = 0 \boldsymbol{x} = 0 x=0为系统的稳定的平衡点。对于稳定的平衡点,如果 x ( t ) → 0 , t → ∞ \boldsymbol{x}(t) \rightarrow 0, t \rightarrow \infin x(t)0,t,则平衡点是渐进稳定的。如果存在 α > 0 , λ > 0 \alpha > 0, \lambda >0 α>0,λ>0使下式在平衡点的邻域内成立:
∥ x ( t ) ∥ < α , ∥ x ( t 0 ) ∥ < e − λ t , ∀ t > t 0 \left \| \boldsymbol{x} (t) \right \| < \alpha, \left \| \boldsymbol{x} (t_0) \right \| < e^{-\lambda t}, \forall t > t_0 x(t)<α,x(t0)<eλt,t>t0

则称平衡点是指数稳定的。如果 r = R r = \mathbb{R} r=R且系统满足渐近(指数)稳定,则平衡点 x = 0 \boldsymbol{x} = 0 x=0全局渐近(指数)稳定的。(对这一块存疑!)

定义3: 如果一个连续标量函数 V ( x ) V(\boldsymbol{x}) V(x)满足 V ( 0 ) = 0 V(0)=0 V(0)=0,且 x ≠ 0 ⇒ V ( x ) > 0 \boldsymbol{x} \neq 0 \Rightarrow V(\boldsymbol{x}) > 0 x=0V(x)>0,则 V ( x ) V(\boldsymbol{x}) V(x)是局部正定的。如果上述性质在整个状态空间成立,则 V ( x ) V(\boldsymbol{x}) V(x)是全局正定的。如果 V ( 0 ) = 0 , x ≠ 0 ⇒ V ( x ) ≥ 0 V(0)=0, \boldsymbol{x} \neq 0 \Rightarrow V(\boldsymbol{x}) \geq 0 V(0)=0,x=0V(x)0,则 V ( x ) V(\boldsymbol{x}) V(x)是半正定的。
使用相似的规则可以得到负定和半负定函数的定义。此外,如果 ∥ x ∥ → ∞ \left \| \boldsymbol{x} \right \| \rightarrow \infin x时, V ( x ) → ∞ V(\boldsymbol{x}) \rightarrow \infin V(x),则称函数 V ( x ) V(\boldsymbol{x}) V(x)是径向无界的。

定义4: 对于一个动态系统,如果从集合 Ω \Omega Ω中某点出发的轨线永远在 Ω \Omega Ω中,则称 Ω \Omega Ω是这个动态系统的不变集。

定义5: 对于一个方阵 H = ( h i j ) n × n \boldsymbol{H} = (h_{ij})_{n \times n} H=(hij)n×n,如果 H = H T \boldsymbol{H} = \boldsymbol{H}^T H=HT,即 h i j = h j i h_{ij} = h_{ji} hij=hji,则 H \boldsymbol{H} H为对称矩阵;反之,如果 H = − H T \boldsymbol{H} = - \boldsymbol{H}^T H=HT,则 H \boldsymbol{H} H为反对称矩阵。此外,如果对于 x ≠ 0 \boldsymbol{x} \neq 0 x=0,有 x T H x > 0 \boldsymbol{x}^T \boldsymbol{H} \boldsymbol{x} > 0 xTHx>0成立,则矩阵 H \boldsymbol{H} H为正定矩阵。如果 H \boldsymbol{H} H对称正定,则满足:
λ m i n ( H ) ∥ x ∥ 2 ≤ x T H x ≤ λ m a x ( H ) ∥ x ∥ 2 \lambda_{min}(\boldsymbol{H}) \left \| \boldsymbol{x} \right \| ^2 \leq \boldsymbol{x}^T \boldsymbol{H} \boldsymbol{x} \leq \lambda_{max}(\boldsymbol{H}) \left \| \boldsymbol{x} \right \| ^2 λmin(H)x2xTHxλmax(H)x2

定义6: 对于一个连续时间线性系统 x ˙ = H x ( t ) \dot{\boldsymbol{x}} = \boldsymbol{H} \boldsymbol{x}(t) x˙=Hx(t),如果矩阵 H \boldsymbol{H} H的所有特征值均含有负实部,则称矩阵 H \boldsymbol{H} H是Hurwitz稳定的,并且存在一个对称正定矩阵 P \boldsymbol{P} P,满足 H T P + P H < 0 \boldsymbol{H}^T \boldsymbol{P} + \boldsymbol{P} \boldsymbol{H} < 0 HTP+PH<0

定理1: (Lyapunov定理) 对于非线性系统 ( 1 ) (1) (1),如果存在一个定义在原点邻域 U 0 ⊂ U U_0 \subset U U0U内的正定标量函数 V ( x ) > 0 V(\boldsymbol{x}) > 0 V(x)>0,且 V ( x ) V(\boldsymbol{x}) V(x)一阶连续可导,其导数 V ˙ ( x ) \dot{V} (\boldsymbol{x}) V˙(x) U 0 U_0 U0内半负定,那么原点 x = 0 \boldsymbol{x} = 0 x=0Lyapunov稳定的,称 V ( x ) V(\boldsymbol{x}) V(x)为Lyapunov函数。如果 V ˙ ( x ) \dot{V} (\boldsymbol{x}) V˙(x) U 0 U_0 U0内是负定的,那么系统在 x = 0 \boldsymbol{x} = 0 x=0处是局部渐近稳定稳定的。如果将邻域 U 0 U_0 U0扩充到整个状态空间,即 U 0 = U = R U_0 = U = \mathbb{R} U0=U=R,则系统在 x = 0 \boldsymbol{x} = 0 x=0处是全局渐近稳定的。

定理2: (LaSalle不变集原理) 对于非线性自治系统 ( 2 ) (2) (2) f ( x ) f(\boldsymbol{x}) f(x)是连续函数, V ( x ) V(\boldsymbol{x}) V(x)具有一阶连续偏导数且径向无界。存在一个正数 c > 0 c > 0 c>0,通过 V ( x ) < c V(\boldsymbol{x}) < c V(x)<c可以定义一个有界区域 U c U_c Uc,且对于 ∀ x ∈ U c \forall \boldsymbol{x} \in U_c xUc,均有 V ˙ ( x ) ≤ 0 \dot{V} (\boldsymbol{x}) \leq 0 V˙(x)0。记 U 0 U_0 U0为所有满足 V ˙ ( x ) = 0 \dot{V} (\boldsymbol{x}) = 0 V˙(x)=0的点的集合, U 1 U_1 U1 U 0 U_0 U0中最大的不变集,则当 t → ∞ t \rightarrow \infin t时,系统的状态将全局收敛于 U 1 U_1 U1

定理3: (Schur补定理) 对于对称分块矩阵 H \boldsymbol{H} H
H = [ H 11 H 12 H 21 H 22 ] \boldsymbol{H} = \left[ \begin{array}{l} \boldsymbol{H}_{11} & \boldsymbol{H}_{12} \\ \boldsymbol{H}_{21} & \boldsymbol{H}_{22} \end{array} \right] H=[H11H21H12H22]

式中,矩阵 H 11 \boldsymbol{H}_{11} H11 H 22 \boldsymbol{H}_{22} H22为方阵, H 21 = H 12 T \boldsymbol{H}_{21} = \boldsymbol{H}_{12}^T H21=H12T。当满足下列条件时,矩阵 H \boldsymbol{H} H是正定的:
{ H 11 − H 12 H 22 − 1 H 21 > 0 , H 22 > 0 H 22 − H 21 H 11 − 1 H 12 > 0 , H 11 > 0 \left \{ \begin{aligned} \boldsymbol{H}_{11} - \boldsymbol{H}_{12} \boldsymbol{H}_{22}^{-1} \boldsymbol{H}_{21} &> 0, \boldsymbol{H}_{22} > 0 \\ \boldsymbol{H}_{22} - \boldsymbol{H}_{21} \boldsymbol{H}_{11}^{-1} \boldsymbol{H}_{12} &> 0, \boldsymbol{H}_{11} > 0 \end{aligned} \right. {H11H12H221H21H22H21H111H12>0,H22>0>0,H11>0

引理1: 如果存在 ϵ 1 > 0 \epsilon_1 > 0 ϵ1>0 ϵ 2 > 0 \epsilon_2 > 0 ϵ2>0 0 < ρ < 1 0 < \rho < 1 0<ρ<1,则下式成立:
( ϵ 1 + ϵ 2 ) ρ ≤ ϵ 1 ρ + ϵ 2 ρ (\epsilon_1 + \epsilon_2)^{\rho} \leq \epsilon_1^{\rho} + \epsilon_2^{\rho} (ϵ1+ϵ2)ρϵ1ρ+ϵ2ρ

引理2: 对于任意向量 x = [ x 1 , x 2 , . . . , x n ] T ∈ R n \boldsymbol{x} = [x_1, x_2, ..., x_n]^T \in \mathbb{R}^n x=[x1,x2,...,xn]TRn,存在 0 < ρ < 2 0 < \rho < 2 0<ρ<2,使得下式成立:
∥ x ∥ ρ ≤ Σ i = 1 n ∣ ( x i ) ∣ ρ \left \| \boldsymbol{x} \right \| ^{\rho} \leq \Sigma_{i = 1} ^n |(\boldsymbol{x}_i)|^{\rho} xρΣi=1n(xi)ρ

以上两个引理不是柯西不等式的推广形式吗?

引理3: (Barbalat引理) 若函数 f ( t ) f(t) f(t) t ∈ [ 0 , ∞ ) t \in \left [ 0, \infin \right ) t[0,)上一阶连续可导,且极限 lim ⁡ t → ∞ f ( t ) \lim_{t \rightarrow \infin} f(t) limtf(t)存在,且对任意的 t ∈ [ 0 , ∞ ) t \in \left [ 0, \infin \right ) t[0,) f ˙ ( t ) \dot{f}(t) f˙(t)均一致连续,则 lim ⁡ t → ∞ f ˙ ( t ) = 0 \lim_{t \rightarrow \infin} \dot{f}(t) = 0 limtf˙(t)=0

引理4: f ( t ) f(t) f(t) t ∈ [ 0 , ∞ ) t \in \left [ 0, \infin \right ) t[0,)上一阶连续,且 ∃ p ∈ [ 1 , ∞ ) \exists p \in \left [1, \infin \right ) p[1,),使得 f ( t ) , f ˙ ( t ) ∈ L ∞ f(t), \dot{f}(t) \in L_{\infin} f(t),f˙(t)L f ˙ ( t ) ∈ L p \dot{f}(t) \in L_p f˙(t)Lp,则 lim ⁡ t → ∞ f ( t ) = 0 \lim_{t \rightarrow \infin} f(t) = 0 limtf(t)=0,其中:
L p = { x ∣ x : [ 1 , ∞ ) , ( ∫ 0 ∞ ∣ x ( t ) ∣ p d t ) 1 / p < ∞ } L_p = \left \{ x \mid x: \left [1, \infin \right ), \left ( \int_0^{\infin}|x(t)|^p dt \right )^{1/p} < \infin \right \} Lp={xx:[1,),(0x(t)pdt)1/p<}

这个有点没看懂哇

有限时间稳定理论

定义7: (有限时间稳定性) 存在一个连续函数 T ( x ) : U 0 ∖ { 0 } → ( 0 , + ∞ ) \boldsymbol{T} (\boldsymbol{x}): U_0 \setminus \{ 0 \} \rightarrow (0, + \infin) T(x):U0{0}(0,+),使得当 t ∈ [ 0 , T ( x 0 ) ] t \in [0, \boldsymbol{T} (\boldsymbol{x}_0)] t[0,T(x0)]时,有 lim ⁡ t → T ( x 0 ) x ( t , x 0 ) = 0 \lim_{t \rightarrow \boldsymbol{T} (\boldsymbol{x}_0)} \boldsymbol{x} (t, \boldsymbol{x}_0) = 0 limtT(x0)x(t,x0)=0。当 t > T ( x 0 ) t > \boldsymbol{T} (\boldsymbol{x}_0) t>T(x0)后,系统状态一直处于平衡点,即 x ( t , x 0 ) = 0 \boldsymbol{x} (t, \boldsymbol{x}_0) = 0 x(t,x0)=0。当 U 0 = U = R n U_0 = U = \mathbb{R}^n U0=U=Rn,系统是全局有限时间收敛的。

有限时间稳定性理论常用方法有:最小能量法、最优控制理论、齐次性理论、Lyapunov稳定性理论 等。

引理5: (Lyapunov有限时间稳定理论) 假定存在一个连续正定的函数 V ( x ) : R n → R V(\boldsymbol{x}): \mathbb{R}^n \rightarrow \mathbb{R} V(x):RnR,满足下式:
V ˙ ( x ) + α 1 V ( x ) + α 2 V α ( x ) ≤ 0 , x ∈ U 0 ∖ { 0 } , U 0 ∈ U \dot{V} (\boldsymbol{x}) + \alpha_1 V(\boldsymbol{x}) + \alpha_2 V^{\alpha} (\boldsymbol{x}) \leq 0, \boldsymbol{x} \in U_0 \setminus \{ 0 \}, U_0 \in U V˙(x)+α1V(x)+α2Vα(x)0,xU0{0},U0U

式中, α 1 > 0 \alpha_1 > 0 α1>0 α 2 > 0 \alpha_2 > 0 α2>0 0 < α < 2 0 < \alpha < 2 0<α<2。则系统 ( 1 ) (1) (1)是有限时间稳定的,收敛时间满足:
t f ≤ t 0 + 1 α 1 ( 1 − α ) ln ⁡ α 1 V 1 − α ( x 0 ) + α 2 α 2 t_f \leq t_0 +\frac{1}{\alpha_1 (1 - \alpha)} \ln \frac{\alpha_1 V^{1 - \alpha} (\boldsymbol{x}_0) + \alpha_2}{\alpha_2} tft0+α1(1α)1lnα2α1V1α(x0)+α2

如果 U 0 = U = R n U_0 = U = \mathbb{R}^n U0=U=Rn,则上述结论可以扩充至 R n \mathbb{R}^n Rn全集,即称系统在 x = 0 \boldsymbol{x} = 0 x=0处是全局有限时间稳定的。

注释:不止这一种Lyapunov有限时间稳定方法。

参考文献

1. 张剑桥. 航天器姿轨一体化建模与控制方法研究[D].哈尔滨工业大学,2020.
  • 5
    点赞
  • 73
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Leweslyh

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值