笔记-六自由度线性化运动模型

航天器的空间旋转角速度 ω \boldsymbol{\omega} ω等于航天器本体坐标系 O x y z Oxyz Oxyz相对于质心轨道坐标系 O x 0 y 0 z 0 Ox_0y_0z_0 Ox0y0z0的旋转角速度矢量 ω r \boldsymbol{\omega}_r ωr与质心轨道坐标系 O x 0 y 0 z 0 Ox_0y_0z_0 Ox0y0z0相对于惯性坐标系 O ′ X Y Z O'XYZ OXYZ的牵连角速度 ω e \boldsymbol{\omega}_e ωe之和,即:
ω = ω r + ω e (1) \boldsymbol{\omega} = \boldsymbol{\omega}_r + \boldsymbol{\omega}_e \tag{1} ω=ωr+ωe(1)

( 1 ) (1) (1)投影至航天器本体坐标系中,有
ω = ω r + B ω e (2) \boldsymbol{\omega} = \boldsymbol{\omega}_r + B\boldsymbol{\omega}_e \tag{2} ω=ωr+Bωe(2)


[ ω x ω y ω z ] = [ φ ˙ θ ˙ ψ ˙ ] + B [ 0 − ω 0 0 ] (3) \begin{bmatrix} \omega_x \\ \omega_y \\ \omega_z \end{bmatrix} = \begin{bmatrix} \dot{\varphi} \\ \dot{\theta} \\ \dot{\psi} \end{bmatrix} + B \begin{bmatrix} 0 \\ - \omega_0 \\ 0 \end{bmatrix} \tag{3} ωxωyωz=φ˙θ˙ψ˙+B0ω00(3)

其中, B B B为质心轨道坐标系 O x 0 y 0 z 0 Ox_0y_0z_0 Ox0y0z0到本体坐标系 O x y z Oxyz Oxyz的转换矩阵(123转序):

B = M 3 ( ψ ) M 2 ( θ ) M 1 ( φ ) = [ cos ⁡ ψ sin ⁡ ψ 0 − sin ⁡ ψ cos ⁡ ψ 0 0 0 1 ] [ cos ⁡ θ 0 − sin ⁡ θ 0 1 0 sin ⁡ θ 0 cos ⁡ θ ] [ 1 0 0 0 cos ⁡ φ sin ⁡ φ 0 − sin ⁡ φ cos ⁡ φ ] = [ cos ⁡ θ cos ⁡ ψ sin ⁡ φ sin ⁡ θ cos ⁡ ψ + cos ⁡ φ sin ⁡ ψ − cos ⁡ φ cos ⁡ ψ sin ⁡ θ + sin ⁡ φ sin ⁡ ψ − cos ⁡ θ sin ⁡ ψ − sin ⁡ φ sin ⁡ θ sin ⁡ ψ + cos ⁡ φ cos ⁡ ψ cos ⁡ φ sin ⁡ ψ sin ⁡ θ + sin ⁡ φ cos ⁡ ψ sin ⁡ θ − sin ⁡ φ cos ⁡ θ cos ⁡ φ cos ⁡ θ ] \begin{aligned} B &= M_3(\psi) M_2(\theta) M_1(\varphi) \\ &= \begin{bmatrix} \cos \psi & \sin \psi & 0 \\ - \sin \psi & \cos \psi & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \theta & 0 & - \sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \varphi & \sin \varphi \\ 0 & - \sin \varphi & \cos \varphi \end{bmatrix} \\ &= \begin{bmatrix} \cos \theta \cos \psi & \sin \varphi \sin \theta \cos \psi + \cos \varphi \sin \psi & - \cos \varphi \cos \psi \sin \theta + \sin \varphi \sin \psi \\ -\cos \theta \sin \psi & - \sin \varphi \sin \theta \sin \psi + \cos \varphi \cos \psi & \cos \varphi \sin \psi \sin \theta + \sin \varphi \cos \psi \\ \sin \theta & - \sin \varphi \cos \theta & \cos \varphi \cos \theta \end{bmatrix} \end{aligned} B=M3(ψ)M2(θ)M1(φ)=cosψsinψ0sinψcosψ0001cosθ0sinθ010sinθ0cosθ1000cosφsinφ0sinφcosφ=cosθcosψcosθsinψsinθsinφsinθcosψ+cosφsinψsinφsinθsinψ+cosφcosψsinφcosθcosφcosψsinθ+sinφsinψcosφsinψsinθ+sinφcosψcosφcosθ

当旋转角 φ \varphi φ θ \theta θ ψ \psi ψ都是小于 1 rad 1 \text{rad} 1rad的小量时,转换矩阵 B B B可以简化为:
B = [ 1 ψ − θ − ψ 1 φ θ − φ 1 ] B = \begin{bmatrix} 1 & \psi & - \theta \\ - \psi & 1 & \varphi \\ \theta & - \varphi & 1 \end{bmatrix} B=1ψθψ1φθφ1

那么,式 ( 3 ) (3) (3)可以变为:
[ ω x ω y ω z ] = [ φ ˙ θ ˙ ψ ˙ ] + [ 1 ψ − θ − ψ 1 φ θ − φ 1 ] [ 0 − ω 0 0 ] (4) \begin{bmatrix} \omega_x \\ \omega_y \\ \omega_z \end{bmatrix} = \begin{bmatrix} \dot{\varphi} \\ \dot{\theta} \\ \dot{\psi} \end{bmatrix} + \begin{bmatrix} 1 & \psi & - \theta \\ - \psi & 1 & \varphi \\ \theta & - \varphi & 1 \end{bmatrix} \begin{bmatrix} 0 \\ - \omega_0 \\ 0 \end{bmatrix} \tag{4} ωxωyωz=φ˙θ˙ψ˙+1ψθψ1φθφ10ω00(4)


{ ω x = φ ˙ − ω 0 ψ ω y = θ ˙ − ω 0 ω z = ψ ˙ − ω 0 φ (5) \left \{ \begin{aligned} \omega_x &= \dot{\varphi} - \omega_0 \psi \\ \omega_y &= \dot{\theta} - \omega_0 \\ \omega_z &= \dot{\psi} - \omega_0 \varphi \\ \end{aligned} \right. \tag{5} ωxωyωz=φ˙ω0ψ=θ˙ω0=ψ˙ω0φ(5)

对上式进一步求导,可得:
{ ω ˙ x = φ ¨ − ω 0 ψ ˙ ω ˙ y = θ ¨ − ω 0 ω ˙ z = ψ ¨ − ω 0 φ ˙ (6) \left \{ \begin{aligned} \dot \omega_x &= \ddot{\varphi} - \omega_0 \dot \psi \\ \dot \omega_y &= \ddot{\theta} - \omega_0 \\ \dot \omega_z &= \ddot{\psi} - \omega_0 \dot \varphi \\ \end{aligned} \right. \tag{6} ω˙xω˙yω˙z=φ¨ω0ψ˙=θ¨ω0=ψ¨ω0φ˙(6)

本体坐标系中航天器姿态动力学方程:
{ I x d ω x d t + ω y ω z ( I z − I y ) = M x I y d ω y d t + ω x ω z ( I x − I z ) = M y I z d ω z d t + ω x ω y ( I y − I x ) = M z (7) \left \{ \begin{aligned} I_x \frac{\text d \omega_x}{\text d t} + \omega_y \omega_z (I_z - I_y) &= M_x \\ I_y \frac{\text d \omega_y}{\text d t} + \omega_x \omega_z (I_x - I_z) &= M_y \\ I_z \frac{\text d \omega_z}{\text d t} + \omega_x \omega_y (I_y - I_x) &= M_z \\ \end{aligned} \right. \tag{7} Ixdtdωx+ωyωz(IzIy)Iydtdωy+ωxωz(IxIz)Izdtdωz+ωxωy(IyIx)=Mx=My=Mz(7)

将式 ( 5 ) (5) (5) ( 6 ) (6) (6)代入式 ( 7 ) (7) (7),化简可得
{ M x = I x φ ¨ + ( I y − I z − I x ) ω 0 ψ ˙ + ( I y − I z ) ω 0 2 φ M y = I y θ ¨ M z = I z ψ ¨ − ( I y − I z − I x ) ω 0 φ ˙ + ( I y − I x ) ω 0 2 ψ (8) \left \{ \begin{aligned} M_x &= I_x \ddot{\varphi} + (I_y - I_z - I_x) \omega_0 \dot{\psi} + (I_y - I_z) \omega_0^2 \varphi \\ M_y &= I_y \ddot{\theta} \\ M_z &= I_z \ddot{\psi} - (I_y - I_z - I_x) \omega_0 \dot{\varphi} + (I_y - I_x) \omega_0^2 \psi \\ \end{aligned} \right. \tag{8} MxMyMz=Ixφ¨+(IyIzIx)ω0ψ˙+(IyIz)ω02φ=Iyθ¨=Izψ¨(IyIzIx)ω0φ˙+(IyIx)ω02ψ(8)

进一步忽略轨道角速度耦合因素,或轨道角速度 ω 0 \omega_0 ω0很小(地球同步轨道),上式可以进一步简化为:
{ M x = I x φ ¨ M y = I y θ ¨ M z = I z ψ ¨ (9) \left \{ \begin{aligned} M_x &= I_x \ddot{\varphi} \\ M_y &= I_y \ddot{\theta} \\ M_z &= I_z \ddot{\psi} \\ \end{aligned} \right. \tag{9} MxMyMz=Ixφ¨=Iyθ¨=Izψ¨(9)

Tips

ϕ \phi ϕ φ \varphi φ是同一个希腊字母,不同的写法,具体差别见知乎:\varphi与\phi有什么区别吗?What does the \var prefix stand for in \varphi and \varepsilon etc?。常见的有:
φ and ϕ ϑ and θ ε and ϵ ϱ and ρ ς and σ ϖ and π \varphi \quad \text{and} \quad \phi \\ \vartheta \quad \text{and} \quad \theta \\ \varepsilon \quad \text{and} \quad \epsilon \\ \varrho \quad \text{and} \quad \rho \\ \varsigma \quad \text{and} \quad \sigma \\ \varpi \quad \text{and} \quad \pi \\ φandϕϑandθεandϵϱandρςandσϖandπ

奇奇怪怪。。。

参考文献

  1. 课件:第三章 航天器姿态运动学和动力学
  2. 黄圳圭. 航天器姿态动力学[M]. 国防科技大学出版社, 1997.
  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Leweslyh

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值