基于连续Ziegler_Nichols的频域响应pid整定

连续Ziegler_Nichols的频域响应pid整定

Ziegler_Nichols频域响应pid整定的方法是基于稳定性分析的频域响应pid整定方法。该方法整定的思想是:对于给定的被控对象传递函数,可以得到其根轨迹,对应穿越Jw轴的点,增益即为Km,而此点的w值即为wm。
整定公式如下
在这里插入图片描述

式中,km为系统开始震荡时的增益K值;wm为震荡频率。

仿真实例

设被控对象为
在这里插入图片描述

代码如下

%PID Controler Based on Ziegler-Nichols
clear all;
close all;

sys=tf(400,[1,30,200,0]);

figure(1);
rlocus(sys);
[km,pole]=rlocfind(sys)

wm=imag(pole(2));
kp=0.6*km
kd=kp*pi/(4*wm)
ki=kp*wm/pi

figure(2);
grid on;
bode(sys,'r');

sys_pid=tf([kd,kp,ki],[1,0])
sysc=series(sys,sys_pid)
hold on;
bode(sysc,'b')

figure(3);
rlocus(sysc);

下图为未整定的开环系统根轨迹图
在这里插入图片描述
整定前后系统的伯德图(红色为整定前,蓝色为整定后)
在这里插入图片描述
下图为整定后闭环系统的根轨迹
在这里插入图片描述
使用rlocus及rlocfind命令可以求得穿越增益km=14.878和穿越频率wm=14rad、s
Ziegler_Nichols整定方法可以求得参数pid
kp = 8.9268
kd =0.49742
ki =40.051
可见,该系统整定后,频带拓宽,相位超前。整定后系统的根轨迹,所有极点位于负变面,达到完全稳定状态。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Not Dr.Wang422

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值