LeCun为何质疑当前大语言模型(LLM)是实现人类水平AI的正确路径?

Yann LeCun质疑当前大语言模型(LLM)是实现人类水平AI的正确路径,主要是因为LLM在多个关键方面存在显著局限性。首先,LLM主要依赖于语言数据进行训练,缺乏对物理世界的理解、持久记忆和推理能力。这些能力是实现通用人工智能(AGI)所必需的,而LLM仅能操纵语言,无法像人类那样进行有效的推理和规划。

此外,LeCun认为LLM的设计方式过于依赖于文本数据,而忽略了通过观察和互动获取知识的重要性。他强调,真正的智能需要能够理解并预测物理世界的变化,而LLM在这方面的能力非常有限。因此,LeCun主张开发新的AI架构,如“世界建模”和联合嵌入预测架构(JEPA),以更好地模拟人类的认知过程,并推动AI向人类水平智能迈进。

LeCun认为LLM无法实现真正的智能,因为它们缺乏必要的认知能力,如推理、规划和持久记忆,而这些能力对于达到人类水平的AI至关重要。

Yann LeCun对大语言模型(LLM)的具体批评是什么?

Yann LeCun对大语言模型(LLM)的具体批评主要集中在以下几个方面:

  1. 缺乏对现实世界的深刻理解:LeCun认为,尽管LLM在特定任务如翻译和图像识别上表现出色,但它们本质上是自回归文本生成模型,只能粗浅地理解世界,缺乏对底层现实知识的掌握,导致错误和不准确的预测。他指出,这些模型难以像人类一样高效地学习、推理和规划。
  2. 计算成本高和内存需求大:当前的LLM基于Transformer架构,计算成本和内存消耗随序列长度增加而急剧上升。这使得模型在处理长文本时效率低下,并且可能无法完全理解生成单词的上下文语境,导致文本生成缺乏深度和上下文关联。
  3. 决策过程缺乏可解释性:LLM的决策过程往往是黑箱的,缺乏透明度和可解释性。这种特性限制了模型在实际应用中的可信度和安全性。
  4. 无法实现真正的通用人工智能(AGI) :LeCun认为,LLM仅能操纵语言,但并不具备真正的智能。它们永远不会带来真正的AGI。他主张放弃主流的生成模型和强化学习方法,转而探索自监督方法,以实现通向AGI的突破。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

百态老人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值