聚类是将将具有相似特征划分为相同点集的操作。
基于空间邻近性的方法
核心思想:依据点的空间距离进行分组
- 欧式聚类(DBSCAN,KD-tree)
原理:基于半径搜索和最小点数扩展簇。
优点:适应不规则形状,无需预设簇数量。 - 区域生长聚类
- 原理:从种子点出发,合并法向量/曲率相似的临近点。
- 使用场景:便面连续物体(管道、墙面)。
调参建议:首先,固定角度阈值,调整knn数目,观察簇的完整性。其次,使用曲率分布统计(如均值±标准差)动态设定角度阈值;或根据点云密度(平均最近邻距离)推导knn。最后,验证指标,评估簇内紧密度和簇间的分离度。
基于特征相似性的方法
核心思想:结合几何/颜色/反射率等特征聚类。
-
K-Means/GMM
原理:在特征空间(坐标+颜色+法向量)迭代划分。
优化:使用PCA降维加速计算。 -
超体素聚类
原理:将点云转为体素网格,合并相似体素(颜色/法线)。
超体素(Supervoxel)是点云中的一种局部结构单元,类似于图像中的超像素(Superpixel),能够将点云划分为具有相似几何/颜色特征的局部块。超体素聚类方法通常比传统欧式聚类更适应复杂场景。
主要的超体素聚类方法:
(1)VCCS (Voxel Cloud Connectivity Segmentation)
原理:将点云体素化,并在体素空技能进行区域生长,合并颜色、法向量和空间距离相似的体素。
特点:适用于RGB-D数据,计算效率高。
(2)SLIC (Simple Linear Iterative Clustering) 3D版
原理:将K-means思想扩展到3D空间,初始化种子点迭代优化超体素边界。
特点:计算快,适合均匀分布点云。
(3)LCCP (Locally Convex Connected Patches)
原理:在超体素基础上,进一步合并局部凸区域,适合复杂拓扑结构(如交叉管道)。
LCCP是一种基于超体素的进阶聚类方法,专门解决复杂拓扑结构(如交叉管道、树枝状物体)的分割问题。核心思想是:
a. 超体素生成:先用VCCS等方法将点云划分为超体素。
b. 凸性验证合并:对相邻超体素进行局部凸性判断,合并满足凸性条件的超体素。
关键概念:
凸性条件:若两个超体素交界处的凹凸角度超过阈值,则判定为非凸连接,不合并。
拓扑保持:通过凸性检查避免国服合并交叉结构。
算法优缺点:
优点:
保留复杂拓扑:通过凸性检查避免交叉结构的错误合并。
多特征融合:支持颜色、法向量等特征参与分割。
缺点:
计算复杂度高:相比VCCS增加凸性验证步骤。
依赖超体素质量:若初始超体素划分不佳,最终受限。
调参建议:
a. 初步测试:固定凸性阈值,调整knn控制凸性检查范围。
b. 后处理:对LCCP结果进行欧式聚类,移除小簇。
c. 可视化验证:用可视化软件检查交界处分割边界是否合理。
通过LCCP方法,可以显著提升复杂场景下的点云分割精度,尤其在工业检测和生物医学领域表现优异。
(4)ETPS (Efficient Topology Preserving Segmentation)
原理:基于图论优化超体素合并,保持拓扑结构。
基于图论的方法
核心思想:将点云建模为图结构进行分割。
- 最小割(MIn Cut):
基于点间相似度构建图,优化切割代价。 - 谱聚类
对图的拉普拉斯矩阵特征分解降维后聚类。
场景需求 | 拟定方法 |
---|---|
简单几何分割 | 欧式聚类 |
复杂特征物体 | 超体素+VCCS |
实时处理 | 基于KD-Tree的快速欧式聚类 |
高精度语义分割 | 深度学习 |
基于深度学习的端到端聚类
核心思想:神经网络直接输出点簇标签。
PointNet++/DGCNN
通过特征提取+聚类头(如MeanShift)实现。
实例分割网络(如PointInst)
同时完成检测与聚类。
评估指标
- 内部指标:轮廓稀疏(Silhouettes Score)
- 外部指标:Adjusted Range Index (ARI)
- 可视化验证:按簇着色检查边界清晰度
常见可统计的体素信息
统计项 | 含义 | 用途举例 |
---|---|---|
点数密度 | 每个体素中包含多少点 | 识别异常密集/稀疏区域,判断缺陷,设备位置等 |
法向量方差 | 点云法向量方向的一致性 | 判断结构是否平整,识别边界/破损/扰动区域 |
坐标方差/均值 | 每个体素内的空间分布特征 | 可用于局部平整度分析,或提取通道形状 |
反射强度均值/方差 | 有反射强度字段的情况下(intensity) | 判断材质差异、识别金属/混凝土/反光物质等 |
曲率均值 | 每个体素点的曲率平均值 | 提取拱顶、仰拱等曲面特征 |
主成分分析特征 | 每个体素内点云的主方向 | 用于几何结构建模、边缘检测等 |
- 示例目标与统计建议
目标 | 建议统计项 |
---|---|
判断隧道结构完整性 | 点密度、法向量方差、曲率 |
提取拱顶和仰拱区域 | 曲率均值、法向量方向、Z坐标均值 |
分析施工缺陷 | 点密度异常、曲率极大值、PCA扁平性指标 |
准备语义分割特征 | 点密度、曲率、法向量一致性、强度 |