奈奎斯特判据
Z = P − R Z = P - R Z=P−R
其中, P P P为开环传递函数在虚轴右侧的极点个数; R R R为开环奈奎斯特曲线逆时针绕 ( − 1 , j 0 ) (-1,j0) (−1,j0) 的圈数, Z Z Z 为闭环传递函数的极点个数。
若 Z = 0 Z=0 Z=0,系统稳定,否则系统不稳定。
以下通过两个例子说明如何使用Nyquist判据判断系统稳定性。
例1

1.计算开环极点,得出在虚轴右侧的极点数 P P P
开环传递函数
G ( s ) H ( s ) = s s 2 + 1 ⋅ 1 = s s 2 + 1 G(s)H(s) = \frac{s}{s^2 + 1} \cdot 1 = \frac{s}{s^2 + 1} G(s)H(s)=s2+1s⋅1=s2+1s
num = [1 0];
den = [1 0 1];
open_root = roots(den)
open_root =
0.0000 + 1.0000i
0.0000 - 1.0000i
其开环极点没有在虚轴右侧,故 P = 0 P=0 P=0。
2.绘制Nyquist图,逆时针绕 ( − 1 , j 0 ) (-1,j0) (−1,j0) 的圈数
num = [1 0];
den = [1 0 1];
open_root = roots(den);
open_sys = tf(num, den);
nyquist(open_sys);

逆时针绕 ( − 1 , j 0 ) (-1, j0) (−1,j0) 共 0 圈,即 R = 0 R=0 R=0。
3.判断结果
由于 Z = P − R = 0 − 0 = 0 Z=P-R=0-0=0 Z=P−R=0−0=0,故系统稳定。
4.验证
容易得出系统的闭环传递函数为
Φ ( s ) = G ( s ) 1 + G ( s ) H ( s ) = s s 2 + s + 1 \Phi(s) = \frac{G(s)}{1+G(s)H(s)} = \frac{s}{s^2 + s + 1} Φ(s)=1+G(s)H(s)G(s)=s2+s+1s
其单位阶跃响应如下
num = [1 0];
den = [1 1 1];
close_sys = tf(num, den);
step(close_sys);

可见系统振幅逐渐减小,趋于稳定。
例2

1.计算开环极点,得出在虚轴右侧的极点数 P P P
开环传递函数
G ( s ) H ( s ) = s − 2 s 3 + 1 ⋅ 1 = s − 2 s 3 + 1 G(s)H(s) = \frac{s-2}{s^3 + 1} \cdot 1 = \frac{s-2}{s^3 + 1} G(s)H(s)=s3+1s−2⋅1=s3+1s−2
num = [1 -2];
den = [1 0 0 1];
open_root = roots(den)
open_root =
-1.0000 + 0.0000i
0.5000 + 0.8660i
0.5000 - 0.8660i
有 2 个开环极点在虚轴右侧,故 P = 2 P=2 P=2。
2.绘制Nyquist图,逆时针绕 ( − 1 , j 0 ) (-1,j0) (−1,j0) 的圈数
num = [1 -2];
den = [1 0 0 1];
open_root = roots(den);
open_sys = tf(num, den);
nyquist(open_sys);

逆时针绕 ( − 1 , j 0 ) (-1, j0) (−1,j0) 共 1 圈,即 R = 1 R=1 R=1。
3.判断结果
由于 Z = P − R = 2 − 1 ≠ 0 Z=P-R=2-1 \neq 0 Z=P−R=2−1=0,故系统不稳定。
4.验证
容易得出系统的闭环传递函数为
Φ ( s ) = G ( s ) 1 + G ( s ) H ( s ) = s − 2 s 3 + s − 1 \Phi(s) = \frac{G(s)}{1+G(s)H(s)} = \frac{s-2}{s^3 + s - 1} Φ(s)=1+G(s)H(s)G(s)=s3+s−1s−2
其单位阶跃响应如下
num = [1 -2];
den = [1 0 1 -1];
close_sys = tf(num, den);
step(close_sys);

可见系统振幅逐渐增大,不稳定。
总结
-
Z Z Z的数学意义是闭环传递函数在右半平面的极点个数, P , R P, R P,R 都是开环传递函数的得到的, 因此Nyquist判据使用开环传递函数即可判断闭环系统的稳定性,避免求解闭环传递函数及闭环传递函数的根。由 Z Z Z 的实际意义,容易理解 Z = 0 Z=0 Z=0 时闭环系统自然稳定。
-
使用Nyquist判据,分三步走,一是判断写出开环传递函数并计算在虚轴右侧的极点个数 P P P;二是绘制出Nyquist图并数出逆时针绕 ( − 1 , j 0 ) (-1,j0) (−1,j0)点的圈数 R R R;三是计算 Z = P − R Z=P-R Z=P−R,若 Z = 0 Z=0 Z=0 则系统稳定,否则系统不稳定。
需要注意的是,由于手工往往只画出一半的Nyquist图,另一半关于实轴对称,此时数得包含 ( − 1 , j 0 ) (-1,j0) (−1,j0)得圈数 N N N 应乘以 2,即 Z = P − 2 N Z=P-2N Z=P−2N。
— 完 —