四旋翼数学模型——动力模型


一、动力模型


动力模型研究四旋翼机体系 x y z xyz xyz 轴上的力矩与四个电机输入油门的关系。这个过程中,假设电池电压不变,那么油门(即PWM波占空比)越大,则电调输入的等效电压越大,电机与螺旋桨转速越快,产生的升力越大;每个螺旋桨通过升力与反扭力转化为力矩与反扭矩,在 x y z xyz xyz 三个轴上合成新的力矩,以下做定量分析。


1.1 符号说明
变量符号单位
每个电机的油门 σ 1 , σ 2 , σ 3 , σ 4 \sigma_1, \sigma_2, \sigma_3, \sigma_4 σ1,σ2,σ3,σ4归一化 [ 0 , 1 ] [0,1] [0,1]
每个螺旋桨产生的升力 F 1 , F 2 , F 3 , F 4 F_1, F_2, F_3, F_4 F1,F2,F3,F4 N \rm N N
每个螺旋桨产生的诱导阻力 f 1 , f 2 , f 3 , f 4 f_1, f_2, f_3, f_4 f1,f2,f3,f4 N \rm N N
每个螺旋桨升力产生的力矩 M 1 , M 2 , M 3 , M 4 M_1, M_2, M_3, M_4 M1,M2,M3,M4 N ⋅ m \rm N\cdot m Nm
每个螺旋桨产生的反扭矩 M r 1 , M r 3 , M r 3 , M r 4 M_{r1}, M_{r3}, M_{r3}, M_{r4} Mr1,Mr3,Mr3,Mr4 N ⋅ m \rm N\cdot m Nm
x y z xyz xyz 轴上的合力矩 τ x , τ y , τ z \tau_x, \tau_y, \tau_z τx,τy,τz N ⋅ m \rm N\cdot m Nm
合升力 T T T N \rm N N

注:为简洁起见,以下省略 1 , 2 , 3 , 4 1,2,3,4 1,2,3,4 下标。

常量符号取值含义
电机时间常数 T m T_m Tm 260 m s 260 \rm ms 260ms电机转速达到稳定转速63.2%所需时间
电机与四旋翼重心距离 d d d 0.225 m 0.225 \rm m 0.225m450四旋翼,机臂长度一半 225mm
电机转速斜率 C m C_m Cm 706.1 r a d / s 706.1 \rm rad/s 706.1rad/s油门从增加1,电机转速增加量
电机转速截距 ϖ m \varpi_m ϖm 170.47 r a d / s 170.47 \rm rad/s 170.47rad/s油门为0时,电机转速
升力系数 c T c_T cT 1.201 × 1 0 − 5 N / ( r a d / s ) 2 1.201\times 10^{-5} \rm N/(rad/s)^2 1.201×105N/(rad/s)2单个螺旋桨转速增加 1 r a d / s 1\rm rad/s 1rad/s,升力增加大小
反扭矩矩系数 c M c_M cM 1.574 × 1 0 − 7 N ⋅ m / ( r a d / s ) 2 1.574\times 10^{-7}\rm N \cdot m / (rad/s)^2 1.574×107Nm/(rad/s)2单个螺旋桨转速增加 1 r a d / s 1\rm rad/s 1rad/s,扭矩增加大小

1.2 电机模型
1.2.1 原理

给电机的油门越大,电机与螺旋桨转速(以下简称电机转速)越快,油门与电机稳态转速之间接近线性关系。但是给电机一个油门之后,电机并不能立即达到对应的转速,可以把电机近似为一阶系统

T m d ϖ ( t ) d t + ϖ ( t ) = C m σ ( t ) + ϖ m (1.1) T_m \frac {\mathrm{d}\varpi(t)}{\mathrm{d}t} + \varpi(t) = C_{m} \sigma(t) + \varpi_{m} \tag{1.1} Tmdtdϖ(t)+ϖ(t)=Cmσ(t)+ϖm(1.1)

其中, C m C_m Cm为电机转速斜率,定义为油门从增加1,电机转速增加量; ϖ m \varpi_m ϖm 为电机转速截距,定义为油门为0时,电机的转速; C m σ ( t ) + ϖ m C_{m} \sigma(t) + \varpi_{m} Cmσ(t)+ϖm 代表电机的稳定转速,与油门线性相关。

为方便理解,式(1.1) 可转化为

ϖ ˙ ( t ) = d ϖ ( t ) d t = 1 T m ( C m σ ( t ) + ϖ m − ϖ ( t ) ) \dot \varpi(t) = \frac {\mathrm{d}\varpi(t)}{\mathrm{d}t} = \frac{1}{T_m} (C_{m} \sigma(t) + \varpi_{m} - \varpi(t)) ϖ˙(t)=dtdϖ(t)=Tm1(Cmσ(t)+ϖmϖ(t))

可见,随着电机转速 ϖ ( t ) \varpi(t) ϖ(t) 的增加,电机转速增量 ϖ ˙ ( t ) \dot \varpi(t) ϖ˙(t) 逐渐减小,电机转速逐渐达到给定转速。这个过程中,如果电机时间常数 T m T_m Tm 越大,则每次转速的增量越小,达到稳定转速的时间越长。


1.2.2 仿真

假设四个电机的输入油门分别时 0.7 , 0.6 , 0.5 , 0.4 0.7, 0.6, 0.5, 0.4 0.7,0.6,0.5,0.4,观察 2 s 2\rm s 2s 内四个电机转速变化。

%% 模型测试
global dt Tm Cm varpim

dt = 1e-3;              % 仿真时间步长
Cm = 706.01;            % 油门增大1,电机转速变化(RPM)
varpim = 170.47;        % 零占空比时电机转速(RPM)
Tm = 0.260;             % 电机时间常数


N = 2000;
t = 0:dt:dt*(N-1);
sigma = [0.7; 0.6; 0.5; 0.4];
varpi = zeros(N, 4);

k=1;
for tt=0:dt:(N-2)*dt
    k = k+1;
    % 动力单元模型
    varpi(k, 1) = motor(sigma(1), varpi(k-1, 1));       % 电机1转速
    varpi(k, 2) = motor(sigma(2), varpi(k-1, 2));       % 电机2转速
    varpi(k, 3) = motor(sigma(3), varpi(k-1, 3));       % 电机3转速
    varpi(k, 4) = motor(sigma(4), varpi(k-1, 4));       % 电机4转速
end

figure(1);plot(t, varpi(:,1), 'LineWidth', 1.5); hold on
plot(t, varpi(:,2), 'LineWidth', 1.5);
plot(t, varpi(:,3), 'LineWidth', 1.5);
plot(t, varpi(:,4), 'LineWidth', 1.5); hold off

legend(['\sigma_1=' num2str(sigma(1))], ['\sigma_2=' num2str(sigma(2))],['\sigma_3=' num2str(sigma(3))],['\sigma_4=' num2str(sigma(4))]);
xlabel('时间 t (s)');ylabel('转速 \varpi  (rad/s)');title('电机模型测试'); grid on; grid minor

%% 电机模型
% 输入:油门大小 sigma(0-1%       电机上一时刻的转速(rad/s)
% 输出:此时刻电机转速(rad/s)

function varpi = motor(sigma, varpi_)
    global dt Tm Cm varpim;
    dvarpi = (Cm * sigma + varpim - varpi_) / Tm * dt;
    varpi = varpi_ + dvarpi;
end

可见,油门越大,电机稳定转速越快,电机在 260 m s 260 \rm ms 260ms 达到稳定转速的63.2% 。


1.3 动力合成模型
1.3.1 合升力

螺旋桨转动产生升力,该升力和螺旋桨转速的平方成正比

f = c T ϖ 2 (1.2) f = c_T \varpi ^2 \tag{1.2} f=cTϖ2(1.2)

其中, c T c_T cT为升力系数。

四个螺旋桨产生的总升力大小为

T = c T ( ϖ 1 2 + ϖ 2 2 + ϖ 3 2 + ϖ 4 2 ) (1.3) T = c_T(\varpi_1^2 + \varpi_2^2 + \varpi_3^2 + \varpi_4^2) \tag{1.3} T=cT(ϖ12+ϖ22+ϖ32+ϖ42)(1.3)

1.3.2 x , y x,y x,y 轴力矩

螺旋桨产生的升力作用在四旋翼上,会导致机体转动,也即产生了力矩。力矩的定义为

M = d × F (1.4) M = d \times F \tag{1.4} M=d×F(1.4)

其中, d d d 为支点到力作用点的矢量, F F F 为力矢量; M M M为力矩,单位 N ⋅ m \rm N\cdot m Nm,其大小为 ∣ d ∣ ⋅ ∣ F ∣ ⋅ sin ⁡ θ |d|\cdot |F| \cdot \sin\theta dFsinθ,方向服从右手法则垂直于 d d d F F F 所在的平面。

如下图所示, O O O为四旋翼重心, F 1 F_1 F1 为1号螺旋桨产生的升力,垂直纸面向外,容易得出力矩

M 1 = d × F 1 (1.5) M_1 = d\times F_1 \tag{1.5} M1=d×F1(1.5)

M 1 M_1 M1 在机体系 x , y x,y x,y 轴上的分量分别为

M 1 x = − 2 2 d F 1 = − 2 2 d c T ϖ 1 2 (1.6) M_{1x} = -\frac{\sqrt {2}}{2} dF_1 =-\frac{\sqrt {2}}{2} d c_T \varpi_1^2 \tag{1.6} M1x=22 dF1=22 dcTϖ12(1.6)

M 1 y = 2 2 d F 1 = 2 2 d c T ϖ 1 2 (1.7) M_{1y} = \frac{\sqrt {2}}{2} dF_1 =\frac{\sqrt {2}}{2} d c_T \varpi_1^2 \tag{1.7} M1y=22 dF1=22 dcTϖ12(1.7)

规定:刚体绕轴转动,力矩为正,刚体绕轴逆时针转动,力矩为负,刚体绕轴为顺时针转动(将坐标系箭头朝向自己,判断顺逆时针)。

1号螺旋桨产生力矩在 x x x 轴上分量为负,导致机体绕 x x x 轴逆时针转动,也即滚转角减小;在 y y y 轴上分量为正,机体系绕 y y y 逆时针转动,俯仰角增大。事实上,1号螺旋桨拉力很大将导致机体右前方升高,即俯仰角增大,滚转角减小,因此上面的规定是合理的。

同理可得其他三个螺旋桨产生的力矩 M 2 , M 3 , M 4 M_2, M_3, M_4 M2,M3,M4,通过力矩的矢量合成,易得 x , y x,y x,y 方向的合力矩为

τ x = 2 2 d c T ( − ϖ 1 2 + ϖ 2 2 + ϖ 3 2 − ϖ 4 2 ) (1.8) \tau_x = \frac{\sqrt {2}}{2} d c_T (-\varpi_1^2 + \varpi_2^2 + \varpi_3^2 - \varpi_4^2) \tag{1.8} τx=22 dcT(ϖ12+ϖ22+ϖ32ϖ42)(1.8)

τ y = 2 2 d c T ( ϖ 1 2 + ϖ 2 2 − ϖ 3 2 − ϖ 4 2 ) (1.9) \tau_y = \frac{\sqrt {2}}{2} d c_T (\varpi_1^2 + \varpi_2^2 - \varpi_3^2 - \varpi_4^2) \tag{1.9} τy=22 dcT(ϖ12+ϖ22ϖ32ϖ42)(1.9)

1.3.3 z z z轴力矩

螺旋桨在转动的时候,迅速冲撞着螺旋桨平面内的空气。根据牛顿第三定律,空气也会给螺旋桨一个反方向的阻力。如下图所示,俯视逆时针转动的1号螺旋桨,螺旋桨转动方向为 v v v,将受到空气的阻力 f 1 f_1 f1,产生力矩 M r 1 M_{r1} Mr1

M r 1 = r × f 1 (1.10) M_{r1} = r \times f_1 \tag{1.10} Mr1=r×f1(1.10)

其中,螺旋桨各点所受空气阻力并不相等, f 1 f_1 f1 为等效空气阻力, r r r 为螺旋桨长度的一半。

由于该力矩使得无人机转动,是反作用力效果,故称该力矩为反扭矩,该空气阻力称为反扭力。根据右手螺旋定则容易得出,叉乘后的方向垂直纸面向内,也即 z z z 轴分量为正,这将导致四旋翼逆时针转动(注意将 z z z 轴箭头朝向自己),俯视而看,四旋翼将顺时针转动。

同理, M r 3 M_{r3} Mr3 也将导致四旋翼顺时针转动(俯视),偏航角增大;而 M r 2 , M r 4 M_{r2}, M_{r4} Mr2,Mr4 将导致四旋翼逆时针转动(俯视),偏航角减小。

以上说明反扭矩的来源及对四旋翼偏航角的影响,但根据式(1.10) 很难计算的反扭矩,因为平均的反扭力 f 1 f_1 f1 难以得出,因此,采用实验方式得出反扭矩。实验表明,反扭矩也和螺旋桨转速的平方成正比

M r = c M ϖ 2 (1.11) M_{r} = c_M \varpi^2 \tag{1.11} Mr=cMϖ2(1.11)

其中, c M c_M cM 称为反扭矩系数,代表单个螺旋桨转速增加 1 r a d / s 1\rm rad/s 1rad/s,反扭矩增加的大小。

因此,四个螺旋桨产生的反扭矩之和为

τ z = c M ( ϖ 1 2 − ϖ 2 2 + ϖ 3 2 − ϖ 4 2 ) (1.12) \tau_z = c_M (\varpi_1^2 - \varpi_2^2 + \varpi_3^2 - \varpi_4^2) \tag{1.12} τz=cM(ϖ12ϖ22+ϖ32ϖ42)(1.12)

1.3.4 模型小结与仿真

综上,得到完整的动力合成模型如下

T = c T ( ϖ 1 2 + ϖ 2 2 + ϖ 3 2 + ϖ 4 2 ) τ x = 2 2 d c T ( − ϖ 1 2 + ϖ 2 2 + ϖ 3 2 − ϖ 4 2 ) τ y = 2 2 d c T ( ϖ 1 2 + ϖ 2 2 − ϖ 3 2 − ϖ 4 2 ) τ z = c M ( ϖ 1 2 − ϖ 2 2 + ϖ 3 2 − ϖ 4 2 ) \begin{aligned} &T = c_T(\varpi_1^2 + \varpi_2^2 + \varpi_3^2 + \varpi_4^2) \\ &\tau_x = \frac{\sqrt {2}}{2} d c_T (-\varpi_1^2 + \varpi_2^2 + \varpi_3^2 - \varpi_4^2) \\ &\tau_y = \frac{\sqrt {2}}{2} d c_T (\varpi_1^2 + \varpi_2^2 - \varpi_3^2 - \varpi_4^2) \\ &\tau_z = c_M (\varpi_1^2 - \varpi_2^2 + \varpi_3^2 - \varpi_4^2) \\ \end{aligned} T=cT(ϖ12+ϖ22+ϖ32+ϖ42)τx=22 dcT(ϖ12+ϖ22+ϖ32ϖ42)τy=22 dcT(ϖ12+ϖ22ϖ32ϖ42)τz=cM(ϖ12ϖ22+ϖ32ϖ42)

假设四个电机的输入油门分别时 0.7 , 0.6 , 0.5 , 0.4 0.7, 0.6, 0.5, 0.4 0.7,0.6,0.5,0.4,计算 2 s 2\rm s 2s 内四个螺旋桨产生的合升力及力矩大小。

%% 模型测试
global dt Tm Cm varpim d cT cM

dt = 1e-3;              % 仿真时间步长
Cm = 706.01;            % 油门增大1,电机转速变化(RPM)
varpim = 170.47;        % 零占空比时电机转速(RPM)
Tm = 0.260;             % 电机时间常数
d = 0.225;              % 450mm/2
cT = 1.201e-5;          % 升力系数
cM = 1.574e-7;          % 反扭力系数

N = 2000;
t = 0:dt:dt*(N-1);
sigma = [0.7; 0.6; 0.5; 0.4];
varpi = zeros(N, 4);
T = zeros(N, 1);
tau = zeros(N, 3);

k=1;
for tt=0:dt:(N-2)*dt
    k = k+1;
    % 电机模型
    varpi(k, 1) = motor(sigma(1), varpi(k-1, 1));       % 电机1转速
    varpi(k, 2) = motor(sigma(2), varpi(k-1, 2));       % 电机2转速
    varpi(k, 3) = motor(sigma(3), varpi(k-1, 3));       % 电机3转速
    varpi(k, 4) = motor(sigma(4), varpi(k-1, 4));       % 电机4转速
    
    [T(k), tau(k,:)] = power_mix(varpi(k, :));
end

figure(1);subplot(211); plot(t, T, 'linewidth', 1.5); title('动力合成模型');ylabel('升力 (N)');
subplot(212);plot(t, tau(:,1), 'linewidth', 1.5);hold on
plot(t, tau(:,2),'linewidth', 1.5);plot(t, tau(:,3),'linewidth', 1.5);hold off
ylabel('力矩 (N\cdotm)');xlabel('时间 (t)'); legend('\tau_x', '\tau_y', '\tau_z');

%% 电机模型
% 输入:油门大小 sigma(0-1%       电机上一时刻的转速(rad/s)
% 输出:此时刻电机转速(rad/s)

function varpi = motor(sigma, varpi_)
    global dt Tm Cm varpim;
    dvarpi = (Cm * sigma + varpim - varpi_) / Tm * dt;
    varpi = varpi_ + dvarpi;
end

%% 动力合成模型
% 输入:四个电机转速
% 输出:合升力与三轴力矩
function [T, tau] = power_mix(varpi)
    global cT cM d;
    T = cT * sum(varpi.^2);
    tau(1) = sqrt(2)/2 * d * cT * (-varpi(1)^2 + varpi(2)^2 + varpi(3)^2 - varpi(4)^2);
    tau(2) = sqrt(2)/2 * d * cT * ( varpi(1)^2 + varpi(2)^2 - varpi(3)^2 - varpi(4)^2);
    tau(3) = cM * (varpi(1)^2 - varpi(2)^2 + varpi(3)^2 - varpi(4)^2);
end

可见,产生了大约1.5kg 的拉力,一般450四旋翼空载质量也大约1.5kg,产生这样的拉力是合理的。绕 y y y 轴的力矩很大,并且是正数,说明这会使得无人机绕 y y y 逆时针运动,俯仰角增大。实际上,由于1号2号电机油门很大,相应的螺旋桨也会产生很大拉力,是的无人机俯仰角增大,与仿真结果一致。同理可分析绕 x x x 轴力矩较小,且会让滚转角稍微变小。同时,由于反扭矩系数远小于升力系数,绕 z z z 的力矩会比绕 x , y x,y x,y 的力矩小一到两个数量级。这说明相比于改变四旋翼俯仰角或滚转角,改变无人机偏航角更为困难,需要电机油门变化量更大,在设计控制系统时应注意。


1.4 动力模型小结

动力模型假设了电池电压不变,建立了四旋翼机体系下升力与力矩 与 四个电机油门的关系。完整模型如下

T m ϖ ˙ 1 ( t ) + ϖ 1 ( t ) = C m σ 1 ( t ) + ϖ m T m ϖ ˙ 2 ( t ) + ϖ 2 ( t ) = C m σ 2 ( t ) + ϖ m T m ϖ ˙ 3 ( t ) + ϖ 3 ( t ) = C m σ 3 ( t ) + ϖ m T m ϖ ˙ 4 ( t ) + ϖ 4 ( t ) = C m σ 4 ( t ) + ϖ m T = c T ( ϖ 1 2 + ϖ 2 2 + ϖ 3 2 + ϖ 4 2 ) τ x = 2 / 2 d c T ( − ϖ 1 2 + ϖ 2 2 + ϖ 3 2 − ϖ 4 2 ) τ y = 2 / 2 d c T ( ϖ 1 2 + ϖ 2 2 − ϖ 3 2 − ϖ 4 2 ) τ z = c M ( ϖ 1 2 − ϖ 2 2 + ϖ 3 2 − ϖ 4 2 ) \begin{aligned} &T_m \dot\varpi_1(t) + \varpi_1(t) = C_{m} \sigma_1(t) + \varpi_{m} \\ &T_m \dot\varpi_2(t) + \varpi_2(t) = C_{m} \sigma_2(t) + \varpi_{m} \\ &T_m \dot\varpi_3(t) + \varpi_3(t) = C_{m} \sigma_3(t) + \varpi_{m} \\ &T_m \dot\varpi_4(t) + \varpi_4(t) = C_{m} \sigma_4(t) + \varpi_{m} \\ &T = c_T(\varpi_1^2 + \varpi_2^2 + \varpi_3^2 + \varpi_4^2) \\ &\tau_x = \sqrt 2/2 d c_T (-\varpi_1^2 + \varpi_2^2 + \varpi_3^2 - \varpi_4^2) \\ &\tau_y = \sqrt 2/2 d c_T (\varpi_1^2 + \varpi_2^2 - \varpi_3^2 - \varpi_4^2) \\ &\tau_z = c_M (\varpi_1^2 - \varpi_2^2 + \varpi_3^2 - \varpi_4^2) \\ \end{aligned} Tmϖ˙1(t)+ϖ1(t)=Cmσ1(t)+ϖmTmϖ˙2(t)+ϖ2(t)=Cmσ2(t)+ϖmTmϖ˙3(t)+ϖ3(t)=Cmσ3(t)+ϖmTmϖ˙4(t)+ϖ4(t)=Cmσ4(t)+ϖmT=cT(ϖ12+ϖ22+ϖ32+ϖ42)τx=2 /2dcT(ϖ12+ϖ22+ϖ32ϖ42)τy=2 /2dcT(ϖ12+ϖ22ϖ32ϖ42)τz=cM(ϖ12ϖ22+ϖ32ϖ42)

专门针对四旋翼建模与控制出了一期教程哦,欢迎购买支持,课程链接 火力教育 四旋翼建模与控制

### 四旋翼无人机控制模型概述 四旋翼无人机的控制模型主要涉及两个方面:飞行器本体模型和控制器设计。飞行器本体模型描述了无人机在空中的物理属性和运动特性,而控制器则负责根据这些特性和目标状态来调整电机转速。 #### 飞行器本体模型 飞行器本体模型通常被简化为刚体动力学方程组,用于表示无人机的质量分布、惯性矩以及受到的各种力和力矩的影响。具体来说,该模型考虑了重力、升力、推力等因素如何共同作用于无人机上,使其能够在三维空间内移动并改变姿态[^1]。 ```matlab % MATLAB代码片段展示简单的六自由度(6DOF)动态建模 function [xdot] = quadrotor_dynamics(t, x, u) % 定义参数 m = 0.5; % 质量 (kg) g = 9.81; % 重力加速度 (m/s^2) % 输入向量u=[f1,f2,f3,f4]'代表四个螺旋桨产生的总升力 F_total = sum(u); % 计算线加速度 a_x = ... a_y = ... a_z = (F_total / m) - g; % 更新位置和速度... end ``` #### 控制器设计 对于四旋翼无人机而言,常用的控制器设计方案包括但不限于: - **PID控制器**:这是一种经典的反馈控制系统,在实际应用中广泛采用。它通过比例(P)、积分(I)、微分(D)三个环节分别处理误差信号的不同部分,最终形成一个综合性的控制指令发送给执行机构——即电动机。这种方式简单易懂且易于实现,但对于复杂的环境变化响应可能不够灵敏。 - **模糊逻辑控制器**:利用人类专家的知识构建规则库来进行决策制定的一种方法论。相比于传统PID方案,这种方法可以在一定程度上提高系统的抗扰动能力和鲁棒性能,尤其是在面对不确定因素较多的情况下表现更为出色[^2]。 - **自适应模型预测控制(AMPC)**:作为一种先进的优化型控制手段,AMPC不仅具备良好的实时调控效果,而且还能自动修正内部工作模式以应对外部条件的变化。其核心在于对未来一段时间内的行为做出预估,并据此规划最优路径或动作序列;同时不断更新自身的数学表达形式以便更好地拟合当前状况下的对象特征[^3]。 综上所述,针对不同的应用场景和技术需求可以选择合适的控制策略应用于四旋翼无人机器件之上,从而达到理想的操控体验与作业效率。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大强强小强强

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值