SVD求解Ax=0

Ax=0的SVD解
本文探讨了齐次线性方程组Ax=0的解及其最小二乘解,详细解析了通过奇异值分解(SVD)求解的过程。文章介绍了SVD的基本原理,以及如何利用SVD解决超定方程的最小二乘问题,特别强调了Ax=0的SVD解是V的最后一列。

AX=0的解

对于齐次线性方程组:
A x = 0 ( A ∈ R m × n ) Ax=0(A\in R^{m \times n}) Ax=0(ARm×n)
m是方程数,n是未知数的个数

  • 当r(A)=r(A ) =n时:

    当A是方阵(m=n)时:

    ​ 齐次线性方程组有非零解的充要条件是它的系数行列式|A|=0,否则只有唯一零解。

    当A(m>n)时-超定方程:

    ​ 只有零解,但是零解一般而言并不是我们想要的,因此需要求它的一个最小二乘解,因为解并不唯一,需要一个合理的约束只求||x||=1的解

  • 当r(A)=r(A )<n,方程组有非零解,这是个充要条件

    而且此时基础解系并不唯一(如果x是方程组的一个解,那么对于任意常数k,kx也是方程组的一个解),方程组必有含 n - r(A) 个向量的基础解系,
    若 ξ 1 , ξ 2 , . . . , ξ n − r 是 方 程 组 的 基 础 解 系 , 那 么 此 时 方 程 组 的 解 可 以 表 示 为 : x = k 1 ξ 1 + k 2 ξ 2 + . . . + K n − r ξ n − r 若\xi_1,\xi_2,...,\xi_{n-r}是方程组的基础解系,那么此时方程组的解可以表示为:\\ x=k_1\xi_1+k_2\xi_2+...+K_{n-r}\xi_{n-r} ξ1ξ2,...,ξnrx=k1ξ1+k2ξ2+...+Knrξnr

注:

n个方程n个未知量的线性方程组有唯一解的充要条件是其系数行列式不等于0,这是线性代数中最重要的结论之一。当线性方程组的系数行列式等于0时,该线性方程组可能无解也可能有无数解,而由于齐次方程组必有零解,故系数行列式等于0时齐次方程组不可能无解,所以有无数组解,也就是有非零解。如果齐次方程组的系数行列式不等于0,那么它有唯一解,又因其必有零解,故这时齐次方程组只有零解。

https://wenku.baidu.com/view/d216b8ba1eb91a37f0115c2f.html

AX=0的最小二乘解

在实际中,所关心的并非是齐次最小二 乘问题的零解,而是它的非零解。因此,总是考虑相应的约束最小二乘问题:
m i n ∣ ∣ A x ∣ ∣ 2 2 s u b j e c t t o ∣ ∣ x ∣ ∣ 2 = 1 min||Ax||^2_2 \\ subject to ||x||_2=1 minAx22subjecttox2=1
SVD求解:

奇异值分解定义:

有一个m×n的实数矩阵A,我们想要把它分解成如下的形式:
A = U Σ V T A=U\Sigma V^T A=UΣVT
其中UV均为单位正交阵

具体计算可以参考:https://byjiang.com/2017/11/18/SVD/

或者:奇异值分解与应用
m i n ∣ ∣ A x ∣ ∣ 2 2 = m i n ∣ ∣ U Σ V T x ∣ ∣ 2 2 = m i n ∣ ∣ Σ V T x ∣ ∣ 2 2 s u b j e c t t o ∣ ∣ x ∣ ∣ 2 = 1 min||Ax||^2_2 =min||U\Sigma V^Tx||^2_2=min||\Sigma V^Tx||^2_2 \\ subject to ||x||_2=1 minAx22=minUΣVTx22=minΣVTx22subjecttox2=1

设 y = V T x 有 : m i n ∣ ∣ Σ V T x ∣ ∣ 2 2 = m i n ∣ ∣ Σ y ∣ ∣ 2 2 s u b j e c t t o ∣ ∣ y ∣ ∣ 2 = 1 设y=V^Tx \\ 有:min||\Sigma V^Tx||^2_2=min||\Sigma y||^2_2 \\ subject to ||y||_2=1 y=VTxminΣVTx22=minΣy22subjecttoy2=1

问题可解。

Ax=0的解是ATA/AAT的最小特征值的特征矢量:

《计算机视觉中的数学方法》推论8.4.6

上述问题等价于(构造成二次型形式求解最小范数问题):
m i n x T A T A x s u b j e c t t o ∣ ∣ x ∣ ∣ 2 = 1 min x^TA^TAx \\ subject to ||x||_2=1 minxTATAxsubjecttox2=1
注:
当 A X = 0 时 , A T A X = 0 , 所 以 A X = 0 的 解 是 A T A X = 0 的 解 。 当 A T A X = 0 时 , 等 式 两 边 同 时 乘 以 X T , 得 X T A T A X = 0 , 也 就 是 ( A X ) T A X = 0 。 而 ( A X ) T A X = ∣ ∣ A X ∣ ∣ , 称 为 A X 的 范 数 , 它 的 取 值 大 于 等 于 0 , 当 且 仅 当 A X = 0 时 , ∣ ∣ A X ∣ ∣ = 0 。 所 以 A T A X = 0 时 , A X = 0 , 即 A T A X = 0 的 解 是 A X = 0 的 解 。 当AX=0时,A^TAX=0,所以AX=0的解是A^TAX=0的解。\\当A^TAX=0时,等式两边同时乘以X^T,得X^TA^TAX=0,\\也就是(AX)^TAX=0。\\而(AX)^TAX=||AX||,称为AX的范数,它的取值大于等于0,当且仅当AX=0时,||AX||=0。\\ 所以A^TAX=0时,AX=0,即A^TAX=0的解是AX=0的解。 AX=0ATAX=0AX=0ATAX=0ATAX=0XTXTATAX=0AXTAX=0AXTAX=AXAX0AX=0AX=0ATAX=0AX=0ATAX=0AX=0
然后SVD求解

主要利用如下性质:
A A T = U Σ V T V Σ T U T = U Σ Σ T U T A T A = V Σ T U T U Σ V T = V Σ T Σ V T AA^T=U\Sigma V^TV\Sigma^TU^T=U\Sigma\Sigma^TU^T\\ A^TA=V\Sigma^T U^TU\Sigma V^T=V\Sigma^T\Sigma V^T\\ AAT=UΣVTVΣTUT=UΣΣTUTATA=VΣTUTUΣVT=VΣTΣVT

Σ Σ T = [ σ 1 2 0 ⋯ 0 0 σ 2 2 ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ σ m 2 ] , Σ T Σ = [ σ 1 2 0 ⋯ 0 0 σ 2 2 ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ σ n 2 ] \Sigma\Sigma^T= \left[ \begin{matrix} \sigma_1^2 &amp; 0 &amp; \cdots &amp; 0 \\ 0 &amp; \sigma_2^2 &amp; \cdots &amp; 0 \\ \vdots &amp; \vdots &amp; \ddots &amp; \vdots \\ 0 &amp; 0 &amp; \cdots &amp; \sigma_m^2 \\ \end{matrix} \right], \Sigma^T\Sigma= \left[ \begin{matrix} \sigma_1^2 &amp; 0 &amp; \cdots &amp; 0 \\ 0 &amp; \sigma_2^2 &amp; \cdots &amp; 0 \\ \vdots &amp; \vdots &amp; \ddots &amp; \vdots \\ 0 &amp; 0 &amp; \cdots &amp; \sigma_n^2 \\ \end{matrix} \right] ΣΣT=σ12000σ22000σm2,ΣTΣ=σ12000σ22000σn2

OpenCV求解SVD

https://blog.csdn.net/weixin_42587961/article/details/96865137

为什么Ax=0的SVD解是V的最后一列

https://blog.csdn.net/weixin_42587961/article/details/97241162

参考

《计算机视觉中的多视图几何》P412

《计算机视觉中的数学方法》第八章

<think>Hmm, the user is asking about solving the matrix equation AX=XB. Looking at the provided references, I can see this is a classic problem with applications in robotics and computer vision, especially for hand-eye calibration. The references give good context - reference [1] mentions this is a well-studied problem with iterative and direct methods, reference [2] explains its geometric meaning in coordinate transformations, references [3] and [5] show Eigen library implementations in C++, and reference [4] details the robotics application in ROS. I recall this equation has special properties - it can be transformed into a linear system using Kronecker products. The structure of A and B matrices determines the solution approach. When A and B are square matrices, we can use eigenvalue methods as shown in reference [3]'s code example. The user seems to want both theoretical understanding and practical implementation methods. They might be working on robotics calibration given the emphasis in references [4] and [5]. I should explain both the mathematical formulation and provide coding examples. For the theoretical part, I'll explain how to transform AX - XB = 0 into a homogeneous system. For practical solutions, I'll cover both the eigenvalue method for small matrices and Kronecker approaches for larger systems. The robotics application context is important too - I should mention how multiple measurements improve accuracy in hand-eye calibration. The user appears technical - they're comfortable with matrix notation and cited specialized references. I'll include the mathematical derivation but emphasize implementation. The Eigen library example from reference [3] will be useful, though I should fix the incomplete generalized eigenproblem approach shown there - col(0) would only give one eigenvector but we need the full solution. I wonder if they need this for real-time applications? The iterative methods mentioned in reference [1] might be relevant for larger systems, though the references didn't provide details. Maybe mention that as an advanced topic in the questions section. </think>求解矩阵方程 $AX = XB$ 的方法主要依赖于矩阵的结构和具体应用场景(如机器人手眼标定)。以下是核心方法及步骤: --- ### **一、数学原理与方法** 1. **方程变换** 将 $AX - XB = 0$ 转化为线性方程组: $$(I \otimes A - B^T \otimes I)\text{vec}(X) = 0$$ 其中 $\otimes$ 表示 Kronecker 积,$\text{vec}(X)$ 是将矩阵 $X$ 按列堆叠成的列向量[^1]。 2. **特征值分解法**(适用于 $A$ 和 $B$ 可对角化) - 若 $A = P_A D_A P_A^{-1}$, $B = P_B D_B P_B^{-1}$,则解为: $$X = P_A Y P_B^{-1}$$ 其中 $Y$ 满足 $D_A Y = Y D_B$(对角矩阵方程易解)[^1][^2]。 3. **SVD 分解法**(鲁棒性更强) - 对 $A$ 和 $B$ 进行奇异值分解(SVD),通过最小二乘法求解超定方程组[^2][^5]。 --- ### **二、应用场景:机器人手眼标定** 在 **手眼标定(Hand-Eye Calibration)** 中,$A$ 表示机械臂末端位姿变化,$B$ 表示相机位姿变化,$X$ 为待求的“手-眼”变换矩阵 $T_{e2c}$(末端到相机的变换)[^4][^5]。 **核心方程**: $$A_i X = X B_i \quad (i=1,2,\dots,n)$$ **求解步骤**: 1. 移动机械臂获取多组 $(A_i, B_i)$ 数据。 2. 构建超定方程组:$\min_X \sum_i \|A_i X - X B_i\|_F^2$。 3. 通过 SVD 或最小二乘法求解 $X$[^4][^5]。 --- ### **三、代码实现(C++ Eigen 库)** ```cpp #include <Eigen/Dense> #include <Eigen/SVD> using namespace Eigen; Matrix4d solveAXXB(const Matrix4d& A, const Matrix4d& B) { // 构造 Kronecker 积的矩阵形式 MatrixXd K = MatrixXd::Zero(16, 16); for (int i = 0; i < 4; ++i) { K.block<4,4>(i*4, i*4) = A; for (int j = 0; j < 4; ++j) K.block<4,1>(i*4, j*4 + i) -= B(j, i) * Matrix4d::Identity(); } // SVD 求解最小二乘解 JacobiSVD<MatrixXd> svd(K, ComputeThinV); VectorXd X_vec = svd.matrixV().col(15); // 最小奇异值对应的右奇异向量 return Map<Matrix4d>(X_vec.data()).transpose(); } int main() { Matrix4d A, B; // 填充 A, B 的数据(示例) A << 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16; B << 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5, 10.5, 11.5, 12.5, 13.5, 14.5, 15.5; Matrix4d X = solveAXXB(A, B); std::cout << "Solution X = \n" << X << std::endl; return 0; } ``` **关键点**: - 使用 SVD 分解 Kronecker 构成的矩阵 $K$,取最小奇异值对应的右奇异向量作为解[^3][^5]。 - 适用于噪声数据,比直接特征值分解更稳定。 --- ### **四、注意事项** 1. **解的唯一性**:当 $A$ 和 $B$ 无共同特征值时,$X=0$ 是唯一解;否则有无穷多解。 2. **数据优化**:实践中需采集多组数据 $(A_i, B_i)$ 并通过优化降低噪声影响[^4][^5]。 3. **数值稳定性**:矩阵条件数较大时,优先使用 SVD 而非特征值分解[^3]。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值