SLAM中三角测量求解特征点世界坐标系下坐标Pw的方法

一.SVD分解法

1.SVD分解的介绍

   

SVD分解的本质就是将一个线性变换 M 分解为旋转 ^{}V^{T} 左乘拉伸\Sigma 再左乘旋转U。

    U和V都表示旋转,均为单位正交矩阵,即满足

det\left | U\right |=1U^{T}=U^{-1}

det\left | V\right |=1V^{T}=V^{-1}

    有时也称作酉矩阵(Unitary Matrix)(矩阵的共轭转置(也称为厄米共轭或伴随矩阵)等于其逆矩阵。

    ^{}V^{T}  \Sigma  U 的性质如下图中所示:

   

求矩阵M的SVD分解的步骤如下:

 2.SVD分解法的推导

 注意事项

  •  这里的pr1和pr2表示的含义如下,此时,对应的u和v为特征点在像素坐标系下的坐标

        当pr1和pr2表示的含义如下时(即不包括相机内参时),对应的u和v变为特征点在归一化坐标系下的坐标 

  •  在下文的求解中,得到的解 x 实际上是 P1 的坐标,是 Pw 在相机1坐标系(即C1)下的坐标,即Pc1。在上面的推导中,我们考虑了相机1的位姿 T1w 和 相机2的位姿 T2w 的相对关系假设了世界坐标系和相机1坐标系(即C1)重合(这样才有P1=Pw),当这两个坐标系不重合时,需使用如下公式得到真正的Pw:

P_{w}=T_{1w}^{-1}P_{1}

3.SVD分解法的求解

    先给出结论:Ax=0的最小二乘解是A^{T}A最小特征值对应的特征向量

    取SVD分解得到的V矩阵最后一列作为 P 1的解,但我们还需要归一化以后才能使用。
    对于超定方程Ax=0,没有真正的非零解析解,因为约束太多,没法都满足(零向量除外),求其最小二乘解近似。

理论推导部分
齐次方程组形如: A x = 0 。
在一些优化,拟合等问题中经常出现,我们常考虑方程多于未知数元数的情况------超定方程组。

首先对于平凡解x=0我们一般不感兴趣,一般我们会寻求方程组的非零解。

如果x是方程组的一个解,那么对于 V k ∈ R , kx也是齐次方程组的解,一个合理的假设是只求满足 \left \| x \right \|=1 的解。

假设A的维数是 m × n ,一般的 m > n (超定),没有真正的非零解析解。当没有精确解的时候,我们通常求其最小二乘解,描述为:

求使||Ax||最小化并满足||x||=1的 x

先介绍一个引理,即对于一个酉阵 p(p^{T}p=I)和一个向量x(向量维数等于P列数),有:

 

至此,求解完毕。

参考:

      【学长小课堂】什么是奇异值分解SVD--SVD如何分解时空矩阵

        奇异值分解(Singular Values Decomposition,SVD)

        SLAM--三角测量SVD分解法、最小二乘法及R t矩阵的判断

        奇异值分解(SVD)方法求解最小二乘问题

                

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值