KAN卷积神经网络来了!全新混合架构已开源,训练速度狂飙16倍

最近大热的KAN终于搭上CNN了,有新的研究将卷积的经典线性变换更改为每个像素中可学习的非线性激活函数,提出了开源KAN卷积CKAN。

这是一种将KAN的优势整合到CNN架构中的创新尝试。众所周知,KAN有着训练速度慢的局限,通过引入卷积神经网络,我们可以利用CNN高效的空间处理能力来优化KAN的结构,从而提升训练速度。

这方面还有一个效果更优的成果KonvNeXt,遥感图像分类领域的,通过将KAN层与多个预训练的CNN模型结合,实现了98.1%的准确率,以及16倍提速。

可见这种结合策略具备高效率和高准确性的优势,是我们构建更高质量深度学习模型的更优选择,已经有不少新研究可以证明,我从中挑选了8个KAN+CNN的新成果分享给大家,建议想发论文的同学抓好这一轮热点。

论文原文+开源代码需要的同学看文末

Convolutional Kolmogorov-Arnold Networks

方法:论文提出了一种新型的神经网络架构CKAN,它将KAN中的非线性激活函数集成到卷积操作中,构建了一种新的层,旨在提高模型的表达能力,同时减少参数数量和提高优化效率。

创新点:

  • 利用Kolmogorov-Arnold定理在神经网络中的应用是理论上的一大突破,可以增强神经模型的表达能力和效率。Kolmogorov-Arnold定理提供了一种将多元连续函数表示为单变量函数和加法组合的方法,这在Kolmogorov-Arnold网络的设计中得到了应用。

  • 将KANs适应于卷积层是另一个重要的创新。传统的卷积神经网络在计算机视觉中广泛使用,但它们使用固定的激活函数和线性变换,而KANs通过使用基于样条的卷积层,可以更有效地捕捉非线性关系。

Combining KAN with CNN: KonvNeXt's Performance in Remote Sensing and Patent Insights

方法:论文介绍了将KAN模型应用于遥感数据集,通过与ConvNeXt算法结合来提高效率和性能。KonvNeXt模型在遥感图像分类任务中表现出色,特别是在Merced数据集上达到了98.1%的准确率,并在处理Optimal-31和Merced数据集时展现出了107.63秒的快速处理速度,这比之前使用ViT模型训练相同数据集平均需要30分钟的时间要快得多。

创新点;

  • 本文首次将KAN应用于遥感数据集,通过将其与ConvNeXt算法集成,为遥感分类任务提供了一种新的有效方法。

  • 通过使用遮挡敏感性方法,该模型还展示了其在解释性方面的潜力,证实了其在医学影像和天气预测等领域的应用可能性。

A KAN-based hybrid deep neural networks for accurate identication of transcription factor binding sites

方法:论文提出了一个名为CRA-KAN的模型,其中C代表卷积神经网络,R代表循环神经网络,A代表注意力机制。这个混合深度神经网络结合了KAN网络以替代传统的多层感知器,并且结合了CNN和双向长短期记忆网络,同时使用了注意力机制来专注于DNA序列中具有转录因子结合基序的区域。

创新点:

  • CRA-KAN模型采用KAN网络取代传统的多层感知机,将卷积神经网络与双向长短期记忆网络结合起来,并利用注意力机制关注具有转录因子结合基序的DNA序列区域。引入残差连接以便于通过学习网络层之间的残差进行优化。

  • 转移学习和Transformer模型的应用:转移学习在任务相似性较低的情况下也比随机初始化参数获得更好的结果。此外,Transformer模型在自然语言处理和图像处理方面取得了显著成功,有望提高转录因子结合位点的预测准确性。

Kolmogorov-Arnold Network for Satellite Image Classification in Remote Sensing

方法:本研究提出了一种将KAN与各种预训练的卷积神经网络模型结合起来用于遥感场景分类任务的方法KCN。作者使用了多个基于CNN的模型,包括VGG16,MobileNetV2,EfficientNet,ConvNeXt,ResNet101和ViT,并评估了它们与KAN配对时的性能。

创新点:

  • 本研究提出了将Kolmogorov-Arnold网络与各种预训练的卷积神经网络模型相结合,用于遥感场景分类任务的方法。

  • 通过使用多个预训练的CNN和ViT模型,并进行比较,我们确定了与KAN最适配的模型组合。

  • 结果表明,KAN可以替代传统的多层感知器,在遥感场景分类任务中获得令人满意的准确性。

关注下方《学姐带你玩AI》🚀🚀🚀

回复“KAN卷积”获取全部论文+开源代码

码字不易,欢迎大家点赞评论收藏

### RT-DETRv3 网络结构分析 RT-DETRv3 是一种基于 Transformer 的实时端到端目标检测算法,其核心在于通过引入分层密集正监督方法以及一系列创新性的训练策略,解决了传统 DETR 模型收敛慢和解码器训练不足的问题。以下是 RT-DETRv3 的主要网络结构特点: #### 1. **基于 CNN 的辅助分支** 为了增强编码器的特征表示能力,RT-DETRv3 引入了一个基于卷积神经网络 (CNN) 的辅助分支[^3]。这一分支提供了密集的监督信号,能够与原始解码器协同工作,从而提升整体性能。 ```python class AuxiliaryBranch(nn.Module): def __init__(self, in_channels, out_channels): super(AuxiliaryBranch, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) self.bn = nn.BatchNorm2d(out_channels) def forward(self, x): return F.relu(self.bn(self.conv(x))) ``` 此部分的设计灵感来源于传统的 CNN 架构,例如 YOLO 系列中的 CSPNet 和 PAN 结构[^2],这些技术被用来优化特征提取效率并减少计算开销。 --- #### 2. **自注意力扰动学习策略** 为解决解码器训练不足的问题,RT-DETRv3 提出了一种名为 *self-att 扰动* 的新学习策略。这种策略通过对多个查询组中阳性样本的标签分配进行多样化处理,有效增加了阳例的数量,进而提高了模型的学习能力和泛化性能。 具体实现方式是在训练过程中动态调整注意力权重分布,确保更多的高质量查询可以与真实标注 (Ground Truth) 进行匹配。 --- #### 3. **共享权重解编码器分支** 除了上述改进外,RT-DETRv3 还引入了一个共享权重的解编码器分支,专门用于提供密集的正向监督信号。这一设计不仅简化了模型架构,还显著降低了参数量和推理时间,使其更适合实时应用需求。 ```python class SharedDecoderEncoder(nn.Module): def __init__(self, d_model, nhead, num_layers): super(SharedDecoderEncoder, self).__init__() decoder_layer = nn.TransformerDecoderLayer(d_model=d_model, nhead=nhead) self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers) def forward(self, tgt, memory): return self.decoder(tgt=tgt, memory=memory) ``` 通过这种方式,RT-DETRv3 实现了高效的目标检测流程,在保持高精度的同时大幅缩短了推理延迟。 --- #### 4. **与其他模型的关系** 值得一提的是,RT-DETRv3 并未完全抛弃经典的 CNN 技术,而是将其与 Transformer 结合起来形成混合架构[^4]。例如,它采用了 YOLO 系列中的 RepNCSP 模块替代冗余的多尺度自注意力层,从而减少了不必要的计算负担。 此外,RT-DETRv3 还借鉴了 DETR 的一对一匹配策略,并在此基础上进行了优化,进一步提升了小目标检测的能力。 --- ### 总结 综上所述,RT-DETRv3 的网络结构主要包括以下几个关键组件:基于 CNN 的辅助分支、自注意力扰动学习策略、共享权重解编码器分支以及混合编码器设计。这些技术创新共同推动了实时目标检测领域的发展,使其在复杂场景下的表现更加出色。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值