要说CV领域经久不衰的研究热点,特征提取可以占一席,毕竟SLAM、三维重建等重要应用的底层都离不开它。
再加上近几年深度学习兴起,用深度学习做特征提取逐渐成了主流,比传统算法无论是性能、准确性还是效率都更胜一筹。
目前比较常见的深度学习特征提取方法有基于transformer、基于CNN、基于LSTM以及基于GAN,都发展的比较成熟。但为了追求更快速、准确、鲁棒的特征点提取,研究者们开始致力于改进深度学习特征提取技术,所以这方向同样也成了发文热门选择,想发论文的同学可以考虑。
最近这方向一些阶段性的结果已经发表了,如果idea难找可以参考参考,我这边直接帮大家省了查找的时间,已经根据上述四种常用方法分别整理了12篇最新的论文,开源的代码已附,大家别错过哦。
论文原文+开源代码需要的同学看文末
基于transformer
T-frex: A transformer-based feature extraction method from mobile app reviews
方法:论文提出一种基于Transformer的特征提取方法,称为T-FREX。该方法使用大型语言模型(LLMs)对移动应用程序评论进行基于标记分类的方法进行了实证评估,以支持特征提取,在不同的数据配置(领域外 vs 领域内)和多个应用程序类别下探索和讨论了多个模型(BERT,RoBERTa,XLNet)的性能。
<