等幅值clark变换推导

在这里插入图片描述
同理,根据功率公式P = (U * U)/R,变换前功率为3*(1 * 1)/R,变换后功率为2*(2/3) * (2/3)/R,假设变换系数为K,为使变换前和变换后的总功率相等,有: 3*(1 * 1)/R = (2*(3K/2) * (3K/2)/R),得:
K*K = 2/3 所以等功率变换系数得K = sqrt(2/3).
所谓得等功率变换得意义,就是变换前后各个分量得做工总和相等

CLARK变换的目的,是为了把三相静止坐标系数据变换为两相垂直坐标参考系数据,这样便于有功无功数据的处理。

### FOC Clark变换简介 在电机控制领域,Clark变换是一种用于将三相静止坐标系下的电流或电压转换到两相静止坐标系的方法。这种变换保持了信号的度不变,因此被称为等变换[^1]。 Clark变换的主要目的是简化交流电动机的矢量控制算法。通过减少一维空间维度,可以更方便地应用后续的Park变换来实现磁场定向控制[^2]。 具体来说,在Clark变换过程中: - 输入为三个相互独立的变量(通常表示为a, b, c) - 输出为两个新的正交分量α 和 β - 变换矩阵具有特定的比例因子以确保输入输出之间的能量守恒关系 对于标准形式的Clark变换方程如下所示: \[ \begin{bmatrix} i_\alpha \\ i_\beta \end{bmatrix}= \frac{2}{3}\begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{2}\\ 0& \frac{\sqrt{3}}{2}&-\frac{\sqrt{3}}{2} \end{bmatrix}\cdot\begin{bmatrix}i_a\\i_b\\i_c\end{bmatrix} \] 其中\(i_a\)、\(i_b\)和\(i_c\)分别代表原始三相系统的瞬时电流;而\(i_α\)和\(i_β\)则是在新建立起来的二维笛卡尔平面上对应的投影向量[^3]. ```matlab function [ia_alpha ib_beta]=clark_transform(ia,ib,ic) % 实现Clark变换函数 T_clark=[1,-1/2,-1/2;... 0,sqrt(3)/2,-sqrt(3)/2]; abc_to_albea=T_clark*[ia;ib;ic];% 进行线性映射 ia_alpha=abc_to_albea(1); ib_beta=abc_to_albea(2); end ``` 上述MATLAB代码实现了基于给定公式的Clark变换过程。该程序接收来自三相电源中的任意时刻采样得到的一组数据作为参数,并返回经过处理后的两个分量
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值