数据要素×应急管理

在这里插入图片描述
“数据要素×”三年行动计划(2024—2026年)提出发挥数据要素的放大、叠加、倍增作用,构建以数据为关键要素的数字经济。
在当今大数据时代,数据要素作为推动社会经济发展的关键引擎之一,其在应急管理领域的深度应用,对于提升安全生产监管能力、强化自然灾害监测评估、以及优化应急协调共享等方面展现出巨大的潜力和价值。以下将从多个角度详述数据要素如何赋能应急管理,助力构建更为精准、高效、科学的现代应急管理体系。

一、行动计划要求

提升安全生产监管能力,探索利用电力、通信、遥感、消防等数据,实现对高危行业企业私挖盗采、明停暗开行为的精准监管和城市火灾的智能监测。鼓励社会保险企业围绕矿山、危险化学品等高危行业,研究建立安全生产责任保险评估模型,开发新险种,提高风险评估的精准性和科学性。提升自然灾害监测评估能力,利用铁塔、电力、气象等公共数据,研发自然灾害灾情监测评估模型,强化灾害风险精准预警研判能力。强化地震活动、地壳形变、地下流体等监测数据的融合分析,提升地震预测预警水平。提升应急协调共享能力,推动灾害事故、物资装备、特种作业人员、安全生产经营许可等数据跨区域共享共用,提高监管执法和救援处置协同联动效率。

二、安全生产监管

针对高危行业的安全生产监管,数据要素的应用为精准打击私挖盗采、明停暗开等违法行为提供了有力工具。具体而言,可以充分整合并挖掘电力、通信、遥感、消防等多源数据资源。例如,通过电力大数据实时监测企业用电量波动,结合通信基站数据追踪异常设备信号,可精准锁定可能存在的非法生产活动;遥感卫星数据则能对地面进行大范围、高频次的扫描,识别出未经许可的开采痕迹或异常土地变化;而消防物联网系统则可实时监控企业消防设施状态及火警信息,及时发现并预警潜在火灾隐患。这种基于大数据的立体化、智能化监管模式,极大地提高了对高危行业违法违规行为的识别精度和响应速度,为维护安全生产秩序提供了坚实保障。

三、安全生产责任保险

数据要素在推动高危行业安全生产责任保险的创新与发展上也发挥了重要作用。鼓励和支持社会保险企业围绕矿山、危险化学品等重点行业,运用大数据、人工智能等技术手段,研究构建科学严谨的安全生产责任保险评估模型。通过对历史事故数据、企业安全管理水平、生产工艺、设备状况、环境因素等多元数据的深度分析,精准量化企业的安全生产风险等级,为保险公司开发新型险种、设定合理保费提供精确依据。这种精细化的风险评估方式,不仅有助于提升保险产品的市场适应性和竞争力,更能引导企业主动提升安全管理标准,形成“保险+服务”模式下的良性互动,有效防范和化解重大安全生产风险。

四、自然灾害监测评估

数据要素在自然灾害监测评估中扮演了不可或缺的角色,助力提升灾害预警的精准性和时效性。以铁塔、电力、气象等公共数据为基础,通过集成学习、深度神经网络等先进算法,研发自然灾害灾情监测评估模型。此类模型能够实时处理海量传感器数据,精准捕捉异常气候现象、地质变动等早期征兆,实现对洪涝、台风、滑坡、泥石流等各类灾害的提前预警,并准确预测灾害影响范围、强度及可能造成的损失。同时,通过对历史灾害数据的深度挖掘,还能为防灾减灾策略制定、应急预案优化提供科学决策支持,从而提升全社会抵御自然灾害的能力。

五、地震预测预警

数据要素在地震预测预警领域的融合应用亦取得了显著成效。通过集成地震活动、地壳形变、地下流体等多种监测数据,运用复杂网络理论、时间序列分析等方法进行深度分析和建模,可揭示地震孕育发生过程中的内在规律,提升地震预测的精度和时效。特别是对于重要地震带、人口密集区等高风险区域,通过构建地震预警信息系统,能够在地震发生后迅速计算出震级、烈度等关键参数,并通过多种渠道向公众发布预警信息,为紧急疏散、应急救援赢得宝贵时间,最大限度减少地震灾害带来的人员伤亡和财产损失。

六、应急协调共享

提升应急协调共享能力是数据要素在应急管理中的另一重要应用方向。通过构建跨部门、跨区域的数据共享平台,实现灾害事故信息、物资装备、特种作业人员资质、安全生产经营许可等关键数据的实时互通,打破信息孤岛,促进监管执法与救援处置的高效协同。例如,在重大灾害事故发生时,救援指挥中心能够快速获取现场灾情、周边救援力量分布、可用物资储备等全方位数据,精准调度救援力量,确保应急响应的快速、有序、高效。同时,通过对历史应急事件的大数据分析,可提炼出应急处置的最佳实践,为未来应对类似灾害提供参考,持续优化应急管理体系。

七、风险态势感知与动态预警

数据要素在应急管理中进一步深化应用,助力构建全方位、多层次的风险态势感知体系,实现对各类灾害风险的实时监测、动态评估与精准预警。通过对地理信息、气候数据、社会经济指标、人口流动、基础设施状况等多元数据的深度融合与智能分析,可以刻画出区域性的风险分布图谱,明确高风险区域、易损目标及脆弱人群,为风险防控提供精准靶向。此外,借助机器学习、深度学习等先进技术,构建风险预警模型,实时捕捉风险演变趋势,预测潜在灾害的发生概率与影响程度,提前发出预警信号,为决策者采取预防措施、启动应急响应提供科学依据,有效降低灾害风险对社会经济的影响。

八、应急资源优化配置

在应急资源配置方面,数据要素的应用极大提升了资源调配的科学性与效率。通过对救援物资库存、救援队伍分布、救援设备性能、交通网络状况等数据的实时采集与智能分析,可实现应急资源的精准定位、动态追踪与优化调度。在灾害发生时,根据灾情评估结果和救援需求预测,通过算法模型快速计算出最优资源配置方案,指导救援力量的快速集结、物资的高效配送以及救援路线的合理规划,确保应急资源在最短时间内到达灾区,满足受灾群众的迫切需求,有效提升救援效率与效果。

九、应急决策支持与智慧指挥

数据要素为应急决策提供了强大的数据支撑与智能辅助。通过构建应急决策支持系统,集成灾害监测数据、风险评估结果、资源调度信息、预案库、法律法规知识库等多元数据资源,为决策者提供全面、准确、及时的决策信息。系统运用数据挖掘、知识图谱、模拟仿真等技术,进行态势分析、情景推演、决策模拟,帮助决策者快速理解复杂灾情,预见决策后果,评估备选方案,做出科学、合理的应急决策。同时,依托云计算、物联网、人工智能等技术,打造智慧应急指挥平台,实现应急指挥的可视化、智能化,确保指令传达的及时性、准确性,提升指挥效能,确保应急行动的高效、有序进行。

十、应急教育与公众参与

数据要素在提升公众应急素养、促进公众参与应急管理工作方面也发挥了重要作用。通过开发应急知识数据库、在线培训平台、虚拟现实演练系统等数字化工具,利用大数据分析公众应急知识需求、认知误区,精准推送定制化的应急教育内容,提升公众的防灾减灾意识与自救互救能力。同时,搭建公众参与应急信息报送、风险隐患上报、志愿者招募等平台,鼓励公众积极参与应急管理工作,形成政府、社会、公众共同参与的应急治理格局,进一步提升全社会的应急响应能力与韧性。
总结来说,数据要素在应急管理领域的深入应用,实现了风险态势的精准感知、应急资源的优化配置、决策支持的科学高效、公众参与的广泛深入,为构建现代化、智能化的应急管理体系提供了强大动力。面对日益复杂的灾害风险挑战,继续推进数据要素与应急管理的深度融合,不断提升应急管理工作智能化、精准化、协同化水平,是保障人民生命财产安全、维护社会稳定、推动经济社会可持续发展的重要途径。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值