算法——K-最近邻(K-Nearest Neighbors,KNN)

在这里插入图片描述
K-最近邻(K-Nearest Neighbors,KNN)算法是一种基于实例的学习方法,以其简洁明了的思路和广泛的适用性在机器学习领域占据重要地位。该算法的核心思想是:对于一个新的、未知类别的数据点,通过比较其与已知类别训练集中的数据点的距离,找出与其最近的K个邻居,并依据这K个邻居的多数类别来决定新数据点的类别归属。

一、KNN算法定义与工作流程

KNN算法是一种非参数、基于距离的分类方法,无需构建显式模型,而是直接依赖于训练数据进行预测。其主要工作流程如下:

  1. 确定K值:K是一个预先设定的正整数,表示在训练集中选取与待分类点最近的邻居数量。K值的选择对最终预测结果有显著影响,需根据具体问题和数据特性进行合理选择。
  2. 距离计算:计算待分类点与训练集中每一个点之间的距离。常用的距离度量包括欧氏距离、曼哈顿距离、切比雪夫距离、马氏距离等。这些距离函数旨在量化不同维度特征间差异的程度。
  3. 寻找最近的K个邻居:根据计算得到的距离,按由近及远排序,选择与待分类点距离最近的K个训练数据点作为其邻居。
  4. 类别决策:统计这K个邻居中各个类别的出现频率,将待分类点归为出现频率最高的类别。这种决策规则被称为“多数表决”或“硬投票”。此外,还可以采用加权投票的方式,赋予距离更近的邻居更大的权重。

二、KNN算法优缺点

优点:
● 简单易懂:KNN算法概念清晰,实

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值