K-最近邻(K-Nearest Neighbors,KNN)算法是一种基于实例的学习方法,以其简洁明了的思路和广泛的适用性在机器学习领域占据重要地位。该算法的核心思想是:对于一个新的、未知类别的数据点,通过比较其与已知类别训练集中的数据点的距离,找出与其最近的K个邻居,并依据这K个邻居的多数类别来决定新数据点的类别归属。
一、KNN算法定义与工作流程
KNN算法是一种非参数、基于距离的分类方法,无需构建显式模型,而是直接依赖于训练数据进行预测。其主要工作流程如下:
- 确定K值:K是一个预先设定的正整数,表示在训练集中选取与待分类点最近的邻居数量。K值的选择对最终预测结果有显著影响,需根据具体问题和数据特性进行合理选择。
- 距离计算:计算待分类点与训练集中每一个点之间的距离。常用的距离度量包括欧氏距离、曼哈顿距离、切比雪夫距离、马氏距离等。这些距离函数旨在量化不同维度特征间差异的程度。
- 寻找最近的K个邻居:根据计算得到的距离,按由近及远排序,选择与待分类点距离最近的K个训练数据点作为其邻居。
- 类别决策:统计这K个邻居中各个类别的出现频率,将待分类点归为出现频率最高的类别。这种决策规则被称为“多数表决”或“硬投票”。此外,还可以采用加权投票的方式,赋予距离更近的邻居更大的权重。
二、KNN算法优缺点
优点:
● 简单易懂:KNN算法概念清晰,实