方差分析(Analysis of Variance,ANOVA)是一种统计方法,用于检验三个或更多样本均值是否存在显著差异。它基于方差的概念,通过比较样本内(组内)和样本间(组间)的变异来确定不同组之间是否存在显著差异。ANOVA可以帮助我们理解不同因素对结果变量的影响。
罗纳德·费希尔(Ronald Fisher)在20世纪初开发了方差分析方法,用于比较不同肥料对作物产量的影响。这是一个经典的ANOVA应用案例,展示了如何使用ANOVA来评估不同处理效果的差异。
一、ANOVA的类型
- 单因素方差分析(One-way ANOVA):
- 用于分析一个独立变量(因素)对依赖变量的影响。
- 独立变量有多个水平,每个水平对应一个样本组。
- 双因素方差分析(Two-way ANOVA):
- 用于分析两个独立变量对依赖变量的交互作用。
- 可以检验两个因素各自对结果的影响,以及它们之间的交互效应。
- 多因素方差分析(Multi-way ANOVA):
- 用于分析两个以上独立变量的交互作用。
- 重复测量方差分析(Repeated Measures ANOVA