深度强化学习(Deep Reinforcement Learning, DRL)是一种结合了深度学习(Deep Learning, DL)和强化学习(Reinforcement Learning, RL)的机器学习方法。它通过使用深度神经网络来近似强化学习中的策略或价值函数,从而解决复杂的决策问题。
一、组成部分
- 强化学习(RL):一种让智能体通过与环境的交互来学习最优行为策略的机器学习方法。它通常包括一个智能体(Agent),一个环境(Environment),一个奖励系统(Reward System),以及一个策略(Policy)。
- 深度学习(DL):一种使用多层神经网络来学习数据的表示和抽象的机器学习模型。它能够处理大量数据,并且能够学习复杂的非线性关系。
- 策略网络(Policy Network):在DRL中,策略网络用于预测给定状态(State)下采取的行动(Action)。它通常是一个深度神经网络,可以输出一个概率分布,表示在给定状态下采取各个可能行动的概率。
- 价值网络(Value Network):用于预测在给定状态下采取某个策略的预期回报。这有助于评估不同策略的好坏。
- 经验回放(Experience Replay)&#