自回归移动平均模型(Autoregressive Moving Average Model,ARMA)是一种时间序列预测模型,它结合了自回归(AR)和移动平均(MA)两种模型的特点。ARMA模型可以表示为:
ARMA模型的目的是捕捉时间序列数据的自相关性,通过拟合历史数据来预测未来的值。它广泛应用于金融、经济、气象等领域的数据分析和预测。
一、构建过程
构建ARMA模型的过程通常包括以下几个步骤:
- 数据收集与初步分析:
- 收集时间序列数据,并进行初步的可视化分析,如绘制时间序列图,以观察数据的趋势、季节性等特征。
- 平稳性检验
- 检查时间序列数据是否平稳。平稳性是ARMA模型的一个基本假设。如果数据非平稳,可能需要先进行差分处理,直到数据变得平稳。
- 确定模型阶数:
- 确定自回归(AR)部分的阶数(p)。这可以通过观察自相关函数(ACF)图来完成,选择在ACF图中拖尾或截尾的位置。
- 确定移动平均(MA)部分的阶数(q)。这可以通过观