EasyPR是一个简单、高效、准确的中文开源车牌识别系统,基于openCV开发,能够识别中文车牌,在图片清晰情况下,车牌检测与字符识别可以达到80%以上的精度。
PlateDetect过程包括车牌定位,SVM训练,车牌判断三个过程,CharsRecognise过程包括字符分割,ANN训练,字符识别三个过程。
在为非限制场景下的车牌识别提供简单、高效、准确的解决方案,成为一个实用的车牌识别引擎。
基于Apache v2.0协议开源,用户可自由获取源代码,并能进行二次开发和定制。
项目地址:https://gitcode.com/gh_mirrors/ea/EasyPR
一、技术架构
1.预处理
灰度化:将彩色图像转换为灰度图像,减少图像数据量,加快后续处理速度,同时保留图像的基本轮廓和纹理信息。
直方图均衡化:增强图像的对比度,使图像中的车牌区域更加清晰,便于后续的车牌定位和字符识别等操作。
高斯模糊:对图像进行平滑处理,去除噪声,减少图像中的细节干扰,提高车牌定位的准确性。
2. 车牌定位
多种定位算法结合:采用CMER、SOBEL和COLOR等多种定位算法,从预处理后的图像中找到可能包含车牌的区域。例如,SOBEL算子可提取图像的边缘信息,通过检测垂直边缘来初步确定车牌的位置;COLOR算法则利用车牌颜色的特征进行定位。
轮廓筛选与验证