视觉基础模型(VFMs)与传统计算机视觉(CV)模型

在这里插入图片描述

计算机视觉是一门研究如何让机器能够“看懂”世界的学科,通过算法处理和理解图像或视频数据。近年来,随着大数据时代的到来及计算能力的显著提升,基于深度神经网络的视觉基础模型逐渐成为该领域的研究热点。这些新模型不仅在性能上取得了突破性进展,而且其应用范围也在不断扩大。
随着深度学习技术的迅猛发展,视觉基础模型(Visual Foundation Models, VFMs)作为一种新兴的图像处理方法,在众多领域展现出了超越传统计算机视觉(Computer Vision, CV)技术的强大能力。VFMs相对于传统CV方法有优势,但也存在局限性。

一、传统计算机视觉方法

1.基本概念
计算机视觉(Computer Vision, CV)致力于使机器能够理解和处理图像或视频中的视觉信息。它涉及从图像或视频数据中提取、分析和理解有意义的信息,例如识别物体、场景分类、检测运动、理解空间关系等。
2. 技术发展历程
● 早期阶段:计算机视觉的起源可以追溯到20世纪50-60年代,当时主要集中在简单的图像处理任务,如边缘检测和图像滤波。这些技术基于数学和信号处理理论,例如通过卷积运算来实现图像的锐化或模糊操作。例如,Sobel算子用于边缘检测,通过计算图像中每个像素点的梯度来确定边缘的位置。
● 特征工程时代:在20世纪70-90年代,研究重点转向了特征提取。人们设计了各种手工特征来描述图像中的物体,如尺度不变特征变换(SIFT)和加速稳健特征(SURF)。这些特征具有尺度和旋转不变性,能够在不同视角和尺度下有效地描述物体的局部特征。例如,SIFT特征通过在图像的不同尺度空间中寻找极值点,并为这些点分配方向和描述子,从而用于物体识别和匹配。
● 机器学习时代的融合:从21世纪初开始,机器学习技术,特别是深度学习的兴起,对计算机视觉产生了深远的影响。传统的手工特征逐渐与机器学习算法相结合,如支持向量机(SVM)用于基于手工特征的物体分类。随着深度学习的发展,卷积神经网络(CNN)开始主导计算机视觉领域,使得计算机视觉任务的性能得到了巨大提升。
3.主要技术和方法
● 图像预处理:
○ 灰度化处理&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值