基于双向变换器的编码表示(BERT)

在这里插入图片描述

BERT(Bidirectional Encoder Representations from Transformers)是一种预训练语言模型,由谷歌在2018年提出。它在自然语言处理(NLP)领域引起了巨大的变革。在BERT之前,许多语言模型主要是单向的,例如从左到右或者从右到左处理文本序列。而BERT的双向特性使得它能够同时考虑文本中单词的前后文信息,从而更好地理解文本的语义。

一、架构特点

1.Transformer架构:BERT基于Transformer架构,Transformer主要由多头注意力(Multi Head Attention)机制和前馈神经网络(Feed Forward Neural Network)组成。多头注意力机制可以让模型在不同的表示子空间中关注输入序列的不同部分,能够有效地捕捉文本中的语义关系。例如,在处理句子“我喜欢吃苹果,因为它很美味”时,模型可以通过注意力机制将“它”和“苹果”联系起来。
2.双向训练:在预训练阶段,BERT采用了两种训练策略,即掩码语言模型(Masked Language Model,MLM)和下一句预测(Next Sentence Prediction,NSP)。
掩码语言模型:在输入文本中,会随机地将一些单词替换为特殊的[MASK]标记。例如,对于句子“我[MASK]北京”,模型需要根据上下文“我”和“北京”来预测被掩码的单词可能是“去”“在”等。这种方式使得模型能够学习到单词在上下文中的语义表示。而且为了避免模型在预训练和微调阶段的差异过大(因为在实际应用中没有[MASK]标记),在选择要掩码的单词时,实际上只有80%的概率会替换为[MASK],10%的概率会替换为其他随机单词,10%的概率保持原单词不变。
下一句预测:模型会同时输入两个句子,然后判断第二个句子是否是第一个句子的下一句。例如,对于句子对“我喜欢读书。我经常去图书馆。”和“我喜欢读书。我喜欢跑步。”,模型需要判断哪一对句子是连续的。这有助

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值