ardupilot开发 --- (扩展)卡尔曼滤波理论 篇

本文深入介绍卡尔曼滤波算法,先通过小车示例感性认识,阐述其使用条件、原理、应用领域等。接着进行理论储备,介绍概率相关概念。然后推导KF,分析无法得到真实值的原因,给出预测模型、先验估计等内容,还提及初始参数取值,最后指出其与状态观测器的关系。

在这里插入图片描述

0.前言

读研究生时,不知听谁说过:研究滤波算法毕业足够了。这句话足够证明滤波算法在控制领域扮演着一个重要的角色,因为如果一个优秀的滤波算法得到应用,即使pid算法的控制性能也能吊打很多当前热门的如mpc、滑膜、反步法、深度学习等智能控制算法。什么是卡尔曼滤波算法,它作用是啥,应用领域是啥,它的优缺点是啥,限制条件是啥,发展瓶颈是啥,当前的研究焦点是啥,接下来请各位读者与我一起进入卡尔曼的其妙世界去探索答案吧…

1. 感性认识卡尔曼滤波

(1)有一辆小车,在一个水平轴上向右行驶,它的初始位置我是用脚测量的,非常不准,但我能确定这个位置在一个高斯分布的范围内,如图:
在这里插入图片描述
(2)此外,我还可以用眼睛大概看出来小车的速度,现在我就可以根据我刚刚用脚测得的位置和我目测的速度,大概估计下一秒它的位置,它大概运动到了这个位置:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值