NCNN for Diagnosis of Bearing Defects in Rotary Machinery -IEEEs

        摘要-这项工作提出了一种新的进化神经网络(NCNN)的发展,用于从小样本中有效识别轴承缺陷。为了从较小的训练数据中进行有效的特征学习,在现有的代价函数中加入额外的稀疏代价,对卷积神经网络(CNN)的代价函数进行了修正。提出了一种新的三角交叉熵函数来计算稀疏成本。提出的代价函数通过避免CNN隐藏层中神经元的必要激活引入稀疏性。为了从小训练样本中识别轴承缺陷,基于NCNN的转移学习以以下方式应用。首先,得到了源域机的原始振动信号和包络信号。然后,将这些包络信号应用于NCNN,以便从源域中获取的大训练数据中学习特征。在特征学习之后,将从神经网络中获得的知识从目标域的小训练样本中转移到神经网络中进行微调。然后,将目标域的测试数据应用于微调的神经网络进行缺陷识别。实验结果验证了提出的交叉熵函数在CNN中引入了稀疏性,因此,创建有效的深度学习,甚至可以在训练数据不丰富的情况下工作。

        索引项-成本函数、智能状态监测、新型卷积神经网络(NCNN)、在线诊断、转移学习、三角交叉熵函数

        1.介绍:在工业4.0时代,机器是任何制造单位的核心要素。系统内的任何故障不仅会增加故障风险,还会对机器产量、生产质量和维护成本造成影响[1]。轴承和齿轮作为重要的机器部件被广泛使用,但最容易出现缺陷。它们的不当功能导致了机器的灾难性故障。轴承和齿轮的性能直接或间接影响机器的运行可靠性[2],[3]。为了提高轴承和齿轮的可靠性,迫切需要一种有效的故障诊断技术。一些研究人员开发了不同的故障诊断方法来识别轴承和齿轮的缺陷。传统的缺陷诊断方法通常依赖于频域、时域和时频域技术[4]、[5]。传统的基于统计特征的数据驱动故障诊断方法对于分类不同的健康状态是有效的。为了在恶劣环境下计算出最可靠的故障特征,去除噪声至关重要。这就是为什么信号去噪吸引了许多研究人员[2],[6]–[8]。研究发现,支持向量机(SVM)和人工神经网络(ANN)等分类和学习模型有助于智能故障诊断[9]-[11]。然而,这些模型完全依赖于手动特征工程[12]。为了克服手动特征学习下存在的问题,研究人员发展了许多先进的故障诊断技术。深度学习正变得越来越流行,因为它能够从收集的数据中自动提取故障特征和有价值的信息,因此被证明比任何传统方法都更有优势。在各种深度学习方法中,卷积神经网络(CNN)已成功应用于图像处理、语音识别、信号处理等各个领域[13]。CNN获取原始数据,能够执行各种操作,如卷积、非线性化和池化,以提取高级特征。与传统方法相比,CNN能够分析和提取更稳健的特征,具有更好的效果[14]。此外,CNN减少了计算时间和训练成本在参数共享和池化操作下。

        因此,CNN可被视为识别轴承和齿轮缺陷的重要工具。Guo等人[15]引入了分层自适应CNN,用于轴承故障大小的模式识别和评估。Azamfaret等人[16]进行了多传感器电流数据的融合,以进行齿轮箱缺陷的诊断。与基于手工特征的机器学习技术相比,作者证明了他们提出的方法比传统方法的有效性。Chen等人[17]将CNN应用于齿轮缺陷识别,并证明CNN与SVM相比能够提供更好的分类效率

        CNN在持续工作条件下具有很好的识别精度。然而,在实际应用中,机械是在不同的负载和速度条件下运行的。这会更快地降低CNN的性能。然而,CNN的这个问题可以通过一个新的深度学习分支——转移学习——来解决,转移学习采用了一种基于知识的技术,为可能有或可能没有标签的小目标开发一个模型[18]。在迁移学习中,训练样本和测试样本的概率分布函数通常是不同的。它被称为域适应分支,可以应用于各种领域以获得有效的结果[19]–[21]。迁移学习是一种有效的深度学习方法,不需要预处理。它可以分为各种类别,包括实例学习、特征转移学习、参数学习和关系知识转移学习[19]。特征迁移学习可以将目标域表示为“好”,并将知识编码为已学习的特征。迁移学习在各个领域都越来越重要,例如图像识别、字符识别、情感分析等[22]-[25]。一些学者也将转移学习应用于机械故障诊断。Tang等人[26]介绍了一种有效的故障诊断方法,可提高不同工况下的分类精度。Wen等人[25]应用自动编码器识别轴承缺陷。Chen等人[27]利用传输分量提取跨域特征,用于故障诊断。采用跨域方法来获得域间相互靠近的空间。知识从一个领域转移到另一个领域。然而,当目标机器训练样本非常小且分类规模很大时,转移学习的效果并不好。这是因为CNN的卷积层有许多参数,导致模型的过度拟合。模型的过度拟合可以通过减少神经元的激活来避免,而神经元的激活可以通过在CNN的现有功能中引入稀疏成本来实现。随后,本文提出了一种新的三角度量交叉熵函数来计算稀疏性代价。最初,指定所需的稀疏性或平均激活。提出的交叉熵函数计算稀疏性的散度。如果期望稀疏度存在收敛,则稀疏度惩罚将添加到现有函数中。这将影响隐藏层的激活,最终导致学习的提高

        提出的基于卷积神经网络(NCNN)的迁移学习方法如下。首先,来自源域的宽样本训练数据被反馈到改进的CNN,用于缺陷特征的学习。学习成功后,将几层神经网络学习到的特征转移到小样本训练中学习故障知识。从小样本学习被称为目标机器的微调数据。然后,将从神经网络中获得的知识转移到小训练样本中对神经网络进行微调。然后将目标域的测试数据应用于微调的神经网络,以识别缺陷。建议的交叉熵函数引入了CNN中的稀疏性,因此,创建了一种有效的深度学习,可以在训练数据不丰富的情况下工作。建议的其他工作安排如下。第二节介绍了CNN的基本理论和数学概念。第三节提供了用于识别轴承故障的拟议的基于转移学习的方法。第四节提供了所提出方法的实验研究和适用性,第五节提供了具体结论和当前工作的未来范围。

        

 

        这篇论文主要是对比了迁移学习下的模型精度对比,提出了一种新的损失函数,理论基于稀疏理论,避免了不必要的神经元的激活,采用了不同的激活函数进行对比,提出了本文方法(关于迁移学习的部分)适合小样本的训练,精度不错。

 

Novel Convolutional Neural Network (NCNN) for the Diagnosis of Bearing Defects in Rotary Machinery | IEEE Journals & Magazine | IEEE Xplore 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值