MoE结合TopK-router简单代码示例

下面是一个简化的 MoE 模型的代码示例,其中包括一个 TopKRouter 和多个专家的实现。在这个例子中,我们使用 PyTorch 框架来定义模型。

import torch
import torch.nn as nn
import torch.nn.functional as F

class Expert(nn.Module):
    def __init__(self, input_dim, output_dim):
        super().__init__()
        self.fc = nn.Linear(input_dim, output_dim)

    def forward(self, inputs):
        return self.fc(inputs)

class TopKRouter(nn.Module):
    def __init__(self, input_dim, num_experts, top_k):
        super().__init__()
        self.projection = nn.Linear(input_dim, num_experts)
        self.top_k = top_k

    def forward(self, inputs):
        # 计算每个专家的分数
        scores = self.projection(inputs)
        # 获取Top-K分数和对应的索引
        top_k_scores, top_k_indices = torch.topk(scores, self.top_k, dim=1)
        # 将Top-K分数转换为概率分布
        probabilities = F.softmax(top_k_scores, dim=1)
        return probabilities, top_k_indices

class MixtureOfExperts(nn.Module):
    def __init__(self, input_dim, output_dim, num_experts, expert_dim, top_k):
        super().__init__()
        self.router = TopKRouter(input_dim, num_experts, top_k)
        self.experts = nn.ModuleList([
            Expert(expert_dim, output_dim) for _ in range(num_experts)
        ])
        self.gate = nn.Softmax(dim=-1)

    def forward(self, inputs):
        # 根据输入数据获取路由概率和Top-K专家索引
        probabilities, expert_indices = self.router(inputs)
        # 将输入数据广播到所有专家
        inputs = inputs.unsqueeze(1).expand(-1, len(self.experts), -1)
        # 根据Top-K索引选择对应的专家
        expert_outputs = torch.zeros_like(inputs).scatter(1, expert_indices, inputs)
        # 将选择的输入数据传递给对应的专家
        expert_results = [expert(expert_outputs[:, i, :]) for i, expert in enumerate(self.experts)]
        # 合并所有专家的输出
        combined_results = torch.stack(expert_results, dim=1)
        # 使用门控网络调整每个专家的输出权重
        gate_weights = self.gate(combined_results.mean(dim=0))
        # 加权求和得到最终输出
        final_output = torch.sum(combined_results * gate_weights.unsqueeze(0), dim=1)
        return final_output, probabilities

# 定义模型参数
input_dim = 10  # 输入特征维度
output_dim = 1   # 输出维度
num_experts = 5 # 专家数量
expert_dim = 10   # 每个专家处理的特征维度
top_k = 3        # Top-K路由

# 创建MoE模型实例
model = MixtureOfExperts(input_dim, output_dim, num_experts, expert_dim, top_k)

# 创建一个假设的输入张量
inputs = torch.randn(2, input_dim)  # 假设batch大小为2

# 获取模型输出
output, probabilities = model(inputs)
print("Model output:", output)
print("Routing probabilities:", probabilities)

在这个示例中,我们定义了三个主要组件:

  1. Expert:代表单个专家的网络,这里简化为一个线性层。
  2. TopKRouter:负责根据输入数据计算分数,并选择Top-K个专家。
  3. MixtureOfExperts:MoE模型,包含多个专家和一个路由器。它定义了如何将输入数据分配给专家,如何聚合专家的输出,并使用门控网络调整每个专家的权重。

请注意,这个示例是为了说明 MoE 模型的基本结构和工作原理,实际应用中可能需要更复杂的网络结构和训练策略。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值