Matplotlib 画出训练与测试在一张图上

本文介绍了如何使用Python和Matplotlib库,从单变量数据中构造训练和测试数据集,通过添加缺失值并填充有效数据,实现数据预处理的可视化展示。重点展示了train_predict与test_predict的划分过程及与原始数据data_ori的关系。
摘要由CSDN通过智能技术生成

代码:data_ori是整个单变量一维数据集合,先构造出形状,使得train与test要画的数据结构斗鱼data_ori一致,再往里面填nan值,最后再把有效数据填入。


import matplotlib.pyplot as plt
import pandas as pd

split_ratio = 100
test_num = 140 #取140个数据做测试
data_ori = selected_dataset[0:test_num]
train_data = data_ori.iloc[0:split_ratio]#除了最后一列不要,代码还可以更加完善可读性高
test_data = data_ori.iloc[split_ratio+20:test_num]#这个20是为了演示下方图蓝色部分
trainPredictPlot = numpy.empty_like(data_ori)
trainPredictPlot[:] = numpy.nan
trainPredictPlot[:split_ratio] = train_data

testPredictPlot = numpy.empty_like(data_ori)
testPredictPlot[:] = numpy.nan
testPredictPlot[split_ratio+20:test_num] = test_data
plt.plot(data_ori)#全部
plt.plot(trainPredictPlot)#训练预测
plt.plot(testPredictPlot)#测试预测
plt.show()

data_ori图

 

Train_predict与test_predict图 

data_ori与Train_predict与test_predict图 ,第一段为train_predict,第二段为data_ori,第三段为test_predict

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值