很好的问题兄弟,rollout 和 episode 在强化学习(RL)里经常一起出现,虽然有重叠,但含义和使用语境还是有区别的:
✅ 一句话总结:
Episode 是一个完整的任务过程(从起点到终点),而 Rollout 是指“用当前策略与环境交互得到的一个或多个 trajectory 的过程”,可包括多个 episode。
🧠 更具体一点:
名词 | 概念定义 | 举例说明 | 是否等价 |
---|---|---|---|
Episode | 从环境初始化开始,到任务终止(done=True)为止的完整序列 | 玩一局游戏直到输赢、机器人走完整个轨道 | ✔️ 一个完整的环境交互 |
Rollout | 用当前策略与环境连续交互的过程,可包括多个 episode 或一个未终止的片段 | 策略网络生成 10 条轨迹,每条都可能没跑完 | ❌ 不一定等于一个 episode(可更长或更短) |
🔁 举例说明(比如玩 CartPole)
假设你用当前策略玩 3 局游戏,每局到杆子倒地为止:
Episode 1: t=0 到 done=True(杆子倒了)
Episode 2: t=0 到 done=True
Episode 3: t=0 到 done=True
如果你说:
“我做了一个 rollout”
可能指的就是:
rollout = [Episode 1, Episode 2, Episode 3]
也可能是:
rollout = t=0 到 t=20 的连续动作序列(episode 可能还没结束)
🚧 在不同 RL 算法中:
场景 | Episode 的含义 | Rollout 的含义 |
---|---|---|
DQN / PPO | 一整条完整的轨迹 | 策略采样的一部分 trajectory |
PPO / TRPO | 用多个 rollout 构成 batch,更新策略 | rollout 用于收集 advantage |
Model-based RL | rollout 可以是模型中预测的过程 | 并不一定是真实交互 |
✅ 简洁对比记忆:
词 | 更偏重 | 是否固定终止 | 用途 |
---|---|---|---|
episode | 环境的定义 | 是(done=True) | 表示一轮完整任务 |
rollout | 策略交互过程 | 不一定(可截断) | 收集经验、训练策略 |
如果你还看到类似词如:
-
trajectory
(轨迹):一条状态-动作序列,通常是 episode 的子集 -
batch of rollouts
:多个 rollout(可是不完整) -
rollout buffer
:存 rollout 数据的 buffer(如 PPO)
需要我再给你画一张「episode vs rollout vs trajectory」的图结构对比图也可以,兄弟你说画我就画。
rollout可以简单理解为完成一轮采样->推理->策略更新吗?
你这个理解很接近了兄弟,咱来精炼一下你的这句话:
✅ 简化理解:
Rollout 可以理解为“用当前策略进行一轮采样”的过程,主要用于收集数据(轨迹),供后续推理和策略更新使用。
🔁 所以,完整流程可以拆解为:
-
Rollout 阶段(采样)
当前策略 π 与环境交互,采样一批数据: -
推理阶段(计算优势值 advantage 或 Q-value)
用 rollout 收集的数据进行:-
advantage 估计(比如 GAE)
-
TD error / reward-to-go 等
-
-
策略更新阶段(训练)
用推理结果更新策略网络 π 或值函数 V,比如:-
PPO 用 clipped objective 更新 π
-
DQN 用 TD Loss 更新 Q
-
🔁 所以你可以这样记:
Rollout:只指“采样这一步”
✅ 用当前策略 π 与环境交互,产生训练用的数据
❌ 不包括后续的推理和更新
🧠 类比一下更直观:
步骤 | 类比 | 描述 |
---|---|---|
Rollout | 打一轮游戏 | 用当前策略去“玩”,并记录整个过程 |
推理 | 复盘这局游戏 | 计算优势 / 奖励等,理解发生了什么 |
策略更新 | 调整打法 | 训练模型,改进策略 π |
✅ 如果你想一句话记忆:
Rollout 是数据采样,推理是数据加工,更新是策略进化。
需要我帮你把这套 RL 训练流程做一张图也可以,兄弟你说!想清楚 PPO、GRPO、SAC 那些怎么组织 rollout 我也可以接着给你说。