还是基础的,我发现这个库,好像没有所谓的滤波模块,不知道是不是我没找到。所以,我仿照pcl 的statistic 思路,写了一个简单的验证的程序,后面想自己写一个类!
#include <cilantro/kd_tree.hpp>
#include <cilantro/io.hpp>
#include <iostream>
int main(int argc, char ** argv) {
std::vector<Eigen::Vector3f> points;
points.emplace_back(0, 0, 0);
points.emplace_back(1, 0, 0);
points.emplace_back(0, 1, 0);
points.emplace_back(0, 0, 1);
points.emplace_back(0, 1, 1);
points.emplace_back(1, 0, 1);
points.emplace_back(1, 1, 0);
points.emplace_back(1, 1, 1);
points.emplace_back(10,0,0);
cilantro::KDTree3f tree(points);
//第一个参数是点,第二个参数是k近邻的个数,第三个参数是半径,可以用来约束找到点的个数
//找到每个点的最近5个点,这里的主要是用平均距离来筛选的,实际上还有其他的参数,后面关于滤波可以一写一个类
std::vector<Eigen::Vector3f>::iterator i;
for( i=points.begin();i!=points.end();){
cilantro::Neighborhood<float> num=tree.kNNSearch(*i,5);
float mean,sum=0;
for (int j = 0; j < num.size(); ++j) {
sum+=num[j].value;
}
mean=sum/num.size();
if(mean>5){
points.erase(i);
} else{
++i;
}
}
//打印出剩下的点
std::cout<<"points size()"<<points.size()<< std::endl;
for (int k = 0; k < points.size(); ++k) {
std::cout<<points[k][0]<<" "<<points[k][1]<<" "<<points[k][2]<<std::endl;
}
return 0;
}