Python点云处理(六)点云特征点/关键点提取算法(下)

本文介绍了Python中点云处理的两种关键点提取算法——ISS和Harris。ISS算法基于点云曲率和法向量,通过计算协方差矩阵的特征值判断关键点。Harris算法则是通过计算点云邻域的梯度和自相关矩阵,寻找具有显著角点的位置。文章详细阐述了两种算法的原理和实现,并提到参数设置对算法效果的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

0 简述

上篇内容中介绍了点云特征点/关键点提取算法中的基于密度提取和基于曲率提取算法。这两种算法在实现上来讲还是比较容易的,这是由于我们的算法中采取了一种简单的采样规则,即按特定阈值将点云划分成了两块,再分别进行采样。本篇将介绍两个复杂一点的关键点提取算法,分别是ISS关键点提取和Harris关键点提取。


1 ISS关键点提取

ISS算法是一种基于点云曲率和法向量的关键点检测方法。它利用点云点的固有形态特征来判断是否为关键点。具体来说,ISS算法首先通过计算每个点的法向量和曲率值,确定其所处的曲面类型。如果该点所在的曲面类型为较为平坦的面,则其不是关键点;否则,该点可能是关键点。接着,ISS算法基于点云中的每个点,计算相邻点与该点之间的角度信息,并将这些角度信息作为该点的固有形态特征。最终,ISS算法结合前面计算的法向量和曲率值,以及固有形态特征,判断每个点是否为关键点。

ISS关键点提取过程如下:

(1)为点云的每个点p_i建立局部坐标系,设定每个点的搜索半径r或k个邻近点。

(2)以搜索半

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Auto工程师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值