随着地下水流基础理论的完善和计算机技术的不断发展,数值模拟技术日趋成熟,地下水数值模拟已成为现代地下水环境定量评价的最重要技术手段之一,在国内外被广泛应用于地下水动态监测、地下水环境演化、地下水资源评价等研究中,相关的数值模拟软件也得到不断的发展和推广。
地下水模型的求解方法有解析法、数值法和物理模拟法。数值法是目前求解模型所用的主要方法,常用方法有:有限差分法(FDM)、有限单元法(FEM)、边界元法(BEM)和有限分析法(FAM),以及由此而发展的特征有限单元法和特征有限差分法,其中最常用的方法为有限差分法和有限单元法(王浩等,2010)。
有限差分法对计算区域进行网格剖分,以差商代替导数,将偏微分方程离散为差分方程,初始条件和边界条件也作相应处理,最后将定解问题转化为一个代数方程组的求解问题。有限差分法有以下优点:数学表达式简单直观、算法效率较高、运算速度快、占用内存少、应用案例多,可供参考的案例丰富等。有限差分方法被广泛应用于孔隙介质、裂隙介质及岩溶介质的地下水流及溶质运移模型的求解,取得了良好效果。但有限差分法难以处理复杂的边界条件和含水层系统,且在溶质运移模拟中求解精度不够高。Visual MODFLOW是基于有限差分法的数值模拟软件之一。
有限单元法的基本思想是把计算区域剖分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选插值函数组成的线性表达式,借助变分原理或加权余量法,将微分方程离散求解。有限单元法有以下优点:对地下水流、溶质运移及热量运移模型的计算过程基本相同,能实现不同模型间的耦合模拟、能处理复杂边界条件和含水层系统、可按不同的精度要求采用不同的单元剖分方式和插值函数。同有限差分法一样,有限单元法不仅可以对孔隙、裂隙及岩溶地下水系统进行模拟,还可对变密度流(如海水入侵)等进行模拟。但该方法也存在着计算量大、占用内存多、计算时间较长等问题。FEFLOW是基于有限单元法的数值模拟软件之一。
边界元法将控制方程转化为边界积分方程,再用有限单元法的思想和方法处理边界积分方程。该方法在研究区内满足控制方程,在边界上只是近似满足边界条件。边界元法的优点是:计算