2020-10-11 LMI线性矩阵不等式的一些知识

线性矩阵不等式的常用引理:

Lemma 1: M M M 是对称阵,那么
λ max ⁡ ( M ) ≤ t ⟺ M − t I ≤ 0 \lambda_{\max }(M) \leq t \Longleftrightarrow M-t I \leq 0 λmax(M)tMtI0
Proof. Note that for an arbitrary matrix M M M with an eigenvalue s s s and a corresponding eigenvector x , x, x, there holds
( M − t I ) x = M x − t x = ( s − t ) x (M-t I) x=M x-t x=(s-t) x (MtI)x=Mxtx=(st)x
This states that for an arbitrary matrix M M M there holds
λ ( M − t I ) = λ ( M ) − t \lambda(M-t I)=\lambda(M)-t λ(MtI)=λ(M)t
Thus, when M M M is symmetric, we have
λ max ⁡ ( M ) ≤ t ⟺ λ max ⁡ ( M − t I ) ≤ 0 ⟺ M − t I ≤ 0 \begin{aligned} \lambda_{\max }(M) \leq t & \Longleftrightarrow \lambda \max (M-t I) \leq 0 \\ & \Longleftrightarrow M-t I \leq 0 \end{aligned} λmax(M)tλmax(MtI)0MtI0

Lemma 2: A A A 是具有合适维数的矩阵, t t t 是一个正数,那么
A T A − t 2 I ≤ 0 ⟺ [ − t I A A T − t I ] ≤ 0. A^{\mathrm{T}} A-t^{2} I \leq 0 \Longleftrightarrow\left[\begin{array}{cc}-t I & A \\ A^{\mathrm{T}} & -t I\end{array}\right] \leq 0. ATAt2I0[tIATAtI]0.
Proof: Put
Q = [ I A 0 t I ] Q=\left[\begin{array}{ll} I & A \\ 0 & t I \end{array}\right] Q=[I0AtI]
then Q Q Q is nonsingular since t > 0. t>0 . t>0. Note that
Q T [ − t I A A T − t I ] Q = [ − t I 0 0 t ( A T A − t 2 I ) ] Q^{\mathrm{T}}\left[\begin{array}{cc} -t I & A \\ A^{\mathrm{T}} & -t I \end{array}\right] Q=\left[\begin{array}{cc} -t I & 0 \\ 0 & t\left(A^{\mathrm{T}} A-t^{2} I\right) \end{array}\right] QT[tIATAtI]Q=[tI00t(ATAt2I)]
again in view of the fact that t > 0 , t>0, t>0, it is clearly observed from the above relation that the equivalence in ( 1.2.4 ) (1.2 .4) (1.2.4) holds. Based on the above lemma, we can derive the following conclusion.

参考资料:

  1. Matlab LMI(线性矩阵不等式)工具箱中文版介绍及使用教程
  • 0
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DR-ZF-

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值