20220312 矩阵许瓦茨不等式

文章目录

引理

A , B \boldsymbol{A}, \boldsymbol{B} A,B m × n m \times n m×n 矩阵, m > n , B m>n, \boldsymbol{B} m>n,B 的秩为 n n n A T A ⩾ ( A T B ) T ( B T B ) − 1 ( B T A ) \boldsymbol{A}^{\mathrm{T}} \boldsymbol{A} \geqslant\left(\boldsymbol{A}^{\mathrm{T}} \boldsymbol{B}\right)^{\mathrm{T}}\left(\boldsymbol{B}^{\mathrm{T}} \boldsymbol{B}\right)^{-1}\left(\boldsymbol{B}^{\mathrm{T}} \boldsymbol{A}\right) ATA(ATB)T(BTB)1(BTA)称为矩阵许瓦茨不等式。

证明

证明: 设有两个 n n n 维向量 λ \boldsymbol{\lambda} λ α \boldsymbol{\alpha} α 如下:
λ = [ λ 1 λ 2 ⋯ λ n ] T , α = [ α 1 α 2 ⋯ α n ] T \boldsymbol{\lambda}=\left[\begin{array}{llll}\lambda_{1} & \lambda_{2} & \cdots & \lambda_{n}\end{array}\right]^{\mathrm{T}}, \quad \boldsymbol{\alpha}=\left[\begin{array}{llll}\alpha_{1} & \alpha_{2} & \cdots & \alpha_{n}\end{array}\right]^{\mathrm{T}} λ=[λ1λ2λn]T,α=[α1α2αn]T考虑下面非负定的标量乘积 ( B λ + A α ) T ( B λ + A α ) ⩾ 0 (\boldsymbol{B} \boldsymbol{\lambda}+\boldsymbol{A} \boldsymbol{\alpha})^{\mathrm{T}}(\boldsymbol{B} \boldsymbol{\lambda}+\boldsymbol{A} \boldsymbol{\alpha}) \geqslant 0 (Bλ+Aα)T(Bλ+Aα)0只有 B λ + A α = 0 \boldsymbol{B} \boldsymbol{\lambda}+\boldsymbol{A} \boldsymbol{\alpha}=\mathbf{0} Bλ+Aα=0 时,上式的等号才成立。
展开上式,可得
λ T B T B λ + α T A T B λ + λ T B T A α + α T A T A α ⩾ 0 \boldsymbol{\lambda}^{\mathrm{T}} \boldsymbol{B}^{\mathrm{T}} \boldsymbol{B} \boldsymbol{\lambda}+\boldsymbol{\alpha}^{\mathrm{T}} \boldsymbol{A}^{\mathrm{T}} \boldsymbol{B} \boldsymbol{\lambda}+\boldsymbol{\lambda}^{\mathrm{T}} \boldsymbol{B}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{\alpha}+\boldsymbol{\alpha}^{\mathrm{T}} \boldsymbol{A}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{\alpha} \geqslant 0 λTBTBλ+αTATBλ+λTBTAα+αTATAα0因为假定 B \boldsymbol{B} B 是满秩的, 所以 ( B T B ) − 1 \left(\boldsymbol{B}^{\mathrm{T}} \boldsymbol{B}\right)^{-1} (BTB)1 存在, 可将上式写成
[ λ + ( B T B ) − 1 B T A α ] T B T B [ λ + ( B T B ) − 1 B T A α ] + α T [ A T A − ( A T B ) T ( B T B ) − 1 ( B T A ) ] α ⩾ 0 \begin{aligned}{\left[\boldsymbol{\lambda}+\left(\boldsymbol{B}^{\mathrm{T}} \boldsymbol{B}\right)^{-1} \boldsymbol{B}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{\alpha}\right]^{\mathrm{T}} \boldsymbol{B}^{\mathrm{T}} \boldsymbol{B}\left[\boldsymbol{\lambda}+\left(\boldsymbol{B}^{\mathrm{T}} \boldsymbol{B}\right)^{-1} \boldsymbol{B}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{\alpha}\right]+}\boldsymbol{\alpha}^{\mathrm{T}}\left[\boldsymbol{A}^{\mathrm{T}} \boldsymbol{A}-\left(\boldsymbol{A}^{\mathrm{T}} \boldsymbol{B}\right)^{\mathrm{T}}\left(\boldsymbol{B}^{\mathrm{T}} \boldsymbol{B}\right)^{-1}\left(\boldsymbol{B}^{\mathrm{T}} \boldsymbol{A}\right)\right] \boldsymbol{\alpha} \geqslant 0 \end{aligned} [λ+(BTB)1BTAα]TBTB[λ+(BTB)1BTAα]+αT[ATA(ATB)T(BTB)1(BTA)]α0
上式对于任意 λ \lambda λ α \boldsymbol{\alpha} α 都成立。选 λ \lambda λ
λ = − ( B T B ) − 1 B T A α \boldsymbol{\lambda}=-\left(\boldsymbol{B}^{\mathrm{T}} \boldsymbol{B}\right)^{-1} \boldsymbol{B}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{\alpha} λ=(BTB)1BTAα
则上式变成 α T [ A T A − ( A T B ) T ( B T B ) − 1 ( B T A ) ] α ⩾ 0 \quad \boldsymbol{\alpha}^{\mathrm{T}}\left[\boldsymbol{A}^{\mathrm{T}} \boldsymbol{A}-\left(\boldsymbol{A}^{\mathrm{T}} \boldsymbol{B}\right)^{\mathrm{T}}\left(\boldsymbol{B}^{\mathrm{T}} \boldsymbol{B}\right)^{-1}\left(\boldsymbol{B}^{\mathrm{T}} \boldsymbol{A}\right)\right] \boldsymbol{\alpha} \geqslant 0 αT[ATA(ATB)T(BTB)1(BTA)]α0因为 α \boldsymbol{\alpha} α 是任意的,只有当 [ A T A − ( A T B ) T ( B T B ) − 1 ( B T A ) ] \left[\boldsymbol{A}^{\mathrm{T}} \boldsymbol{A}-\left(\boldsymbol{A}^{\mathrm{T}} \boldsymbol{B}\right)^{\mathrm{T}}\left(\boldsymbol{B}^{\mathrm{T}} \boldsymbol{B}\right)^{-1}\left(\boldsymbol{B}^{\mathrm{T}} \boldsymbol{A}\right)\right] [ATA(ATB)T(BTB)1(BTA)] 是非负定时,这个二次型才是非负定的, 因此有式
A T A ⩾ ( A T B ) T ( B T B ) − 1 ( B T A ) \boldsymbol{A}^{\mathrm{T}} \boldsymbol{A} \geqslant\left(\boldsymbol{A}^{\mathrm{T}} \boldsymbol{B}\right)^{\mathrm{T}}\left(\boldsymbol{B}^{\mathrm{T}} \boldsymbol{B}\right)^{-1}\left(\boldsymbol{B}^{\mathrm{T}} \boldsymbol{A}\right) ATA(ATB)T(BTB)1(BTA)证毕。

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DR-ZF-

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值