(CVPR,2023)大规模知识图谱下的零样本目标分类

Zero-shot Object Classification with Large-scale Knowledge Graph

相关资料

论文:Zero-shot Object Classification with Large-scale Knowledge Graph

摘要

零样本学习是针对预测未见类别的研究,它可以解决在训练时未预见到的类别问题以及缺乏标记数据集的问题。零样本目标分类的方法之一是使用知识图谱,这是一组显性知识。由于识别限于知识图谱中包含的类别,并且随着图谱大小的不同,类别之间的关系在数量和质量上都有望变得更加丰富,因此处理一个包含尽可能多类别的大规模知识图谱是可取的。我们使用的知识图谱包含的类别数量大约是现有研究中主要使用的知识图谱的七倍,以实现对更多类别的分类并实现更准确的识别。在使用大规模知识图谱时,预计噪声节点和边的数量会增加。因此,我们提出了一种方法,通过知识图谱中类别之间的位置关系和边的类型,从整个图中提取有用信息。我们对现有研究中无法分类的图像进行了分类,并展示了所提出数据提取方法与使用整个图谱相比提高了性能。

引言

为了执行零样本目标分类,应该使用训练数据集中的类别所获得的知识,来预测在训练时不存在的未见类别。一种方法是使用知识图谱,如WordNetConceptNet
零样本目标分类的优势在于无需训练数据集即可执行,但它限于知识图谱中包含的类别。此外,随着图谱大小的不同,类别之间的关系在数量和质量上都有望变得更加丰富。因此,使用包含尽可能多类别的大规模知识图谱是可取的。
我们的工作贡献是:

  • 在零样本目标分类中,我们应用了大规模知识图谱来对现有研究中未作为识别目标的类别进行分类。
  • 在将大规模知识图谱应用于零样本目标分类时,我们提出了基于类别之间的语义连接和关系类型从知识图谱中提取有效信息的方法。
  • 我们通过实验表明,所提出数据提取方法提高了零样本目标分类的性能。

方法

在这里插入图片描述

与以往使用知识图谱的研究一样,本研究采用的方法是将嵌入的语义特征作为输入信息,并构建一个通过知识图谱的图卷积网络(GCN)来对零样本类别进行分类的对象分类模型。为了使用大规模知识图谱,模型构建基于Wang等人的框架。然而,包括在ConceptNet中的类别是识别的目标,包括那些无法通过基于WordNet的方法进行分类的类别。此外,为了处理由于ConceptNet中的大规模概念而预计会增加的噪声节点和边,我们使用知识图谱中的类别位置关系和边的类型等图信息,从整个图中提取仅对零样本对象分类有效的信息。

整体流程

  1. 使用预训练的ResNet50的最后一层权重作为训练数据,训练基于从ConceptNet提取的知识图谱的GCN。GCN的输入是每个节点对应的GloVe词特征嵌入向量,每个节点输出对应于ResNet50预训练类别的最后一层权重的特征向量。在此训练中,最小化了L2距离。学习到的GCN除了训练类别之外,还输出了零样本对象分类的目标类别的预测分类器的权重。预测分类器被替换为ResNet50的最后一层。
  2. 通过冻结预测分类器权重,通过学习训练类别的分类任务,微调原始分类器部分,该部分提取图像特征。

通过上述训练和微调,可以对零样本对象分类的目标类别进行分类。图卷积网络。由Kiph等人[9]提出的GCN可以描述如下:

H ( ℓ + 1 ) = σ ( D ~ − 1 2 A ~ D ~ − 1 2 H ( ℓ ) W ( ℓ ) ) H^{(\ell+1)} = \sigma \left( \tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}} H^{(\ell)} W^{(\ell)} \right) H(+1)=σ(D~21A~D~21H()W(

### CVPR 2023 关于目标检测的研究成果 CVPR 2023作为计算机视觉领域的顶级会议,吸引了众多高质量的目标检测相关论文提交。这些研究不仅展示了最新的算法和技术进展,还提供了丰富的实验数据和开源资源。 #### 注意力机制在目标跟踪中的应用 注意力机制显著提升了目标跟踪的效果。通过引入这一机制,模型能够自适应地选择目标的关键特征,进而提高了跟踪的准确性和鲁棒性[^1]。这种改进对于复杂场景下的目标检测尤为重要,因为复杂的背景可能会干扰传统的检测方法。 #### 实际案例分析 具体到CVPR 2023上发布的几项重要工作: - **基于生成对抗网络的目标跟踪**:这项研究表明如何利用GANs来增强目标跟踪系统的性能,在面对遮挡或其他不利条件时表现出更强的能力。 - **Divide and Adapt: Active Domain Adaptation via Customized Learning**:虽然主要关注域适应问题,但此工作中提出的定制化学习策略同样适用于提升跨不同环境条件下目标检测的表现[^2]。 #### 数据统计与影响力评估 据统计,CVPR 2023共收到了来自世界各地的9,155篇论文投稿,其中仅有约25.78%即2,360篇文章有幸被录用。这表明每一篇成功入选的文章都经历了严格筛选过程,代表着当前最先进水平的技术突破。 ```python # Python代码用于计算接收比例 total_submissions = 9155 accepted_papers = 2360 acceptance_rate = accepted_papers / total_submissions * 100 print(f"The acceptance rate of CVPR 2023 is {acceptance_rate:.2f}%.") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值