(6)物种注释

目录

一、metaphlan 宏基因组对测序结果进行物种注释

二、checkM评估bins的完整性和污染度

三、kraken2进行物种注释

一、metaphlan 宏基因组对测序结果进行物种注释

$ nohup metaphlan UyA_1.clear.fq,UyA_2.clear.fq --bowtie2out metagenome.bowtie2.bz2 --nproc 40 --input_type fastq --bowtie2db /ifs1/User/wuqi/database/metaphlan_dbs -x mpa_v30_CHOCOPhlAn_201901 -o metaphlan_output.txt &
#使用metaphlan进行物种注释 输入用于拼接的两个双端数据(本次用的是经过trimmomatic质控后的clear数据) --bowtie2out 输出一个压缩包(可更改名字) --nproc设置线程  --input_type输入类型 
--bowtie2db /ifs1/User/wuqi/database/metaphlan_dbs -x mpa_v30_CHOCOPhlAn_201901 调用已有的数据库,否则运行时会下载数据库到默认位置
#挂一下nohup贼慢!
$ nohup metaphlan bin.55.fasta --nproc 40 --input_type fasta --bowtie2db /ifs1/User/wuqi/database/metaphlan_dbs -x mpa_v30_CHOCOPhlAn_201901 -o bin.55metaphlan_output.txt &
#metaphlan 宏基因组对测序结果进行物种注释 #输入待注释数据 生成个XX.bowtie2.bz2压缩文件(不知道有啥用) 设置线程 40  输入类型是fastq格式  设置参考数据库 输出XXout文件 

二、checkM评估bins的完整性和污染度

但是我感觉这个软件对于地衣很不准确~

$ checkm lineage_wf -t 2 -x fasta ./ output -f XX.txt  
#checkM评估bins的完整性和污染度,基因组组装质量评估 
#-t 是线程数 -x 是输入文件类型 -f 是输出文件 

$ checkm lineage_wf -t 10 -x fa -f checkm_out.txt ~/Qxy/qxycexu/U.aprina/INITIAL_BINNING/concoct_bins ./

在用metawrap分箱时,就有checkM评估的步骤,经常因为它的评估结果不好,导致下一步无法提纯。

三、kraken2进行物种注释

$ kraken2 --db ~/database/kraken2_db/fungi --threads 5 --report report.kreport --output output.out --paired sample_1.fastq sample_2.fastq  
#kraken2进行物种注释  
#设置数据库,设置线程数,输出一个报告(含物种注释情况),和out文件(具体)
$ nohup kraken2 --db ~/database/kraken2_db/fungi --threads 10 --report UyAkrakenreport.kreport --output UyAkrakenoutput.out --paired UyA_1.clear.fq UyA_2.clear.fq &

这个是根据数据库比对来的,库里缺少地衣的数据,多次尝试自己构建Kraken库,失败~

### 焦磷酸测序中的物种注释方法和工具 焦磷酸测序技术,也称为454测序,是一种高通量测序平台,在微生物群落研究中广泛应用。为了实现有效的物种注释,通常采用一系列计算生物学工具和技术来处理原始序列数据并将其映射到已知的分类单元。 #### 数据预处理 在进行物种注释之前,需要对原始读段进行质量控制过滤。这一步骤涉及去除低质量碱基、接头污染和其他可能影响后续分析准确性的因素[^1]。常用的软件包如Trimmomatic可以用于此目的。 #### 序列聚类与OTU挑选 通过将相似度高的序列聚集在一起形成操作分类单位(Operational Taxonomic Units, OTUs),能够简化下游分析流程。VSEARCH或USEARCH等工具支持基于距离阈值的方法来进行高效聚类,并能有效减少冗余信息[^2]。 #### 参考数据库构建 建立一个全面而精确的参考基因组/标记基因集合对于提高物种分配精度至关重要。Silva、Greengenes 和 RDP 是广泛认可且维护良好的公共资源库,它们提供了不同层次上的细菌及古菌分类学框架[^3]。 #### 分类学指派算法 利用BLASTN、RDP Classifier 或者更先进的Naive Bayes分类器(例如SINTAX)可针对每个OTU代表序列执行同源搜索匹配工作,从而推断其最接近的亲缘关系并赋予相应的分类标签[^4]。 ```bash # 使用vsearch进行去重和聚类 vsearch --derep_fulllength reads.fasta --output dereplicated_reads.fasta vsearch --cluster_size dereplicated_reads.fasta --id 0.97 --centroids otus.fasta # 利用sintax进行分类学注释 usearch -sintax otus.fasta -db sintax_db -tabbedout otu_taxonomy.txt ``` #### 功能预测与代谢重建 除了基本的系统发育定位外,还可以借助KEGG Orthology (KO) 注释体系进一步解析特定功能模块的存在情况;PICRUSt则是专门设计用来从16S rRNA 基因片段反向推测整个宏基因组特征的强大工具之一[^5]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值