染色体可视化工具-生信工具40

1. MG2C_v2.1

MG2C (Map Gene to Chromosome) 是一个基因组数据可视化工具,主要用于将基因、标记、QTL 等功能性元素映射到染色体上。MG2C_v2.1 是其升级版本,提供了用户友好的界面和更多自定义选项。

功能特点

  • 染色体绘图: 将基因组或染色体上的标记、基因、QTL 映射到染色体图中,并按用户提供的位置进行可视化。
  • 自定义绘图: 支持自定义染色体形状、颜色、标记样式和标签。
  • 数据格式: 以简单的 .txt.csv 文件提供染色体编号、位置和注释信息。
  • 输出格式: 支持生成高质量的矢量图(SVG)和常见图像格式(如 PNG)。

使用场景

  • 基因组研究中可视化基因和功能标记分布。
  • 分析 QTL 和重要基因在染色体上的位置。
  • 可视化染色体上的标记分布,用于遗传图构建和基因组比较。

输入数据格式

MG2C_v2.1 的输入数据通常是一个包含染色体编号、起始位置、结束位置和注释信息的表格。例如:

ChromosomeStartEndGene/FeatureType
Chr1100200GeneAGene
Chr1300400QTL1QTL
Chr2150250GeneBGene

优点

  • 易用性: 提供基于网页的用户界面,无需编程经验。
  • 灵活性: 可根据研究需求定制染色体图。
  • 高质量输出: 生成的图像适合用于科研论文和演示。

官方使用

 工具1,在线 

http://mg2c.iask.in/mg2c_v2.1/index_cn.html

MG2C_v2.1 可通过其官方网站访问并操作:MG2C_v2.1


2. MapChart

MapChart 是一种更通用的可视化工具,用于创建遗传或物理作图。它可以生成基因组遗传图(linkage maps)、染色体图和 QTL 分布图。

功能特点

  • 遗传图绘制: 支持基于遗传连锁数据生成遗传图,展示基因标记的顺序和位置。
  • 染色体可视化: 绘制染色体和标记分布图,用于显示基因组中重要特征的位置。
  • QTL 分布图: 显示 QTL 在染色体上的分布,支持多个 QTL 映射。
  • 跨染色体同源性绘图: 显示基因或标记在不同染色体或物种之间的同源关系。

使用场景

  • 遗传连锁图构建与可视化。
  • 比较不同物种或基因组之间的染色体结构。
  • 显示重要标记或基因的分布。

输入数据格式

MapChart 支持简单的文本格式(.txt),通常包括染色体编号、基因位置和标记信息。例如:

group Chr1
GeneA 10
GeneB 20
GeneC 30

group Chr2
GeneD 15
GeneE 25
GeneF 35

优点

  • 灵活性: 用户可以手动调整染色体和标记的布局。
  • 跨物种比较: 支持多个基因组和染色体的并行可视化。
  • 轻量级工具: 软件安装和运行简单,适合各种硬件平台。

官方网站

 工具2,本地

MapChart

安装包官网有

https://www.wur.nl/en/show/mapchart.htm

可下载 MapChart 并了解更多信息:MapChart


MG2C_v2.1 和 MapChart 的对比

特性MG2C_v2.1MapChart
主要用途染色体标记和基因分布图遗传图谱和 QTL 可视化
用户界面基于网页,无需安装桌面软件,需要安装
数据格式CSV/TXT,基于染色体位置TXT,基于遗传标记位置
输出格式SVG、PNGPDF、PNG、JPG
灵活性高,支持丰富的样式和标注中等,适用于标准遗传或物理作图
适合场景基因组标记分布、染色体比较遗传图谱构建、多基因组同源性比较

3. RIdeogram

RIdeogram 是一个 R 包,用于高效、灵活地可视化基因组信息(如基因分布、基因密度、QTL 分布、SNP 密度等),通过生成高质量的染色体图。该包能够将染色体数据转化为直观的染色体带图,非常适合用于基因组研究、进化分析和基因定位的结果展示。

功能特点

  1. 染色体可视化:

    • 绘制染色体的比例尺(以物理位置为单位)。
    • 在染色体上展示基因分布、QTL 分布、SNP 密度等。
  2. 灵活的数据输入:

    • 支持任意染色体数量和任意比例的基因组范围。
    • 支持绘制注释信息,例如基因、标记位置。
  3. 高质量输出:

    • 输出 SVG 矢量图,适合科研论文和演示使用。
  4. 直观的基因组信息展示:

    • 显示基因组特征分布(如基因密度或结构变异)。
    • 可视化染色体上的热点区域、标记、拷贝数变异(CNV)等。

主要功能

  • 绘制染色体图: 将染色体编号、长度和标注信息转化为可视化图表。
  • 显示基因组分布: 绘制基因、SNP、QTL 或其他分布特征的密度图。
  • 多染色体展示: 支持多染色体基因组的全局可视化。

安装

可以通过 CRAN 或 GitHub 安装 RIdeogram

从 CRAN 安装
install.packages("RIdeogram")
从 GitHub 安装(最新版本)

如果需要最新版:

install.packages("remotes") 
remotes::install_github("Vegpl/RIdeogram")


install.packages("devtools")
#devtools::install_github('TickingClock1992/RIdeogram')

输入数据格式

RIdeogram 支持两种主要的数据输入类型:染色体数据注释数据

1. 染色体数据

定义染色体的长度和编号,格式如下:

ChrStartEnd
Chr10100000
Chr20200000
Chr30150000
2. 注释数据

注释数据定义在染色体上的功能元素(如基因、QTL、SNP),格式如下:

ChrStartEndNameColor
Chr11000020000Gene1red
Chr25000070000QTL1blue

使用方法

1. 绘制基础染色体图

加载包并使用内置数据绘制:

library(RIdeogram) # 内置数据示例 

> data(human_karyotype, package="RIdeogram")
> head(human_karyotype)

data(gene_density, package="RIdeogram")
head(gene_density)


# 绘制染色体图 
ideogram(karyotype, ideogram, output = "chromosome.svg")
2. 使用自定义数据

通过自定义染色体和注释数据绘制:

# 染色体数据 karyotype <- data.frame( Chr = c("Chr1", "Chr2"), Start = c(0, 0), End = c(100000, 150000) ) # 注释数据 annotation <- data.frame( Chr = c("Chr1", "Chr1", "Chr2"), Start = c(10000, 30000, 80000), End = c(20000, 40000, 100000), Name = c("Gene1", "Gene2", "QTL1"), Color = c("red", "blue", "green") ) # 绘制染色体图 ideogram(karyotype, annotation, output = "custom_chromosome.svg")
3. 输出高质量 SVG 图

生成的 chromosome.svg 文件可以直接在支持矢量图的软件中(如 Adobe Illustrator 或 Inkscape)进行进一步编辑。

比较而言,小白用在线的作图放附件就好。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值