1. MG2C_v2.1
MG2C (Map Gene to Chromosome) 是一个基因组数据可视化工具,主要用于将基因、标记、QTL 等功能性元素映射到染色体上。MG2C_v2.1 是其升级版本,提供了用户友好的界面和更多自定义选项。
功能特点
- 染色体绘图: 将基因组或染色体上的标记、基因、QTL 映射到染色体图中,并按用户提供的位置进行可视化。
- 自定义绘图: 支持自定义染色体形状、颜色、标记样式和标签。
- 数据格式: 以简单的
.txt
或.csv
文件提供染色体编号、位置和注释信息。 - 输出格式: 支持生成高质量的矢量图(SVG)和常见图像格式(如 PNG)。
使用场景
- 基因组研究中可视化基因和功能标记分布。
- 分析 QTL 和重要基因在染色体上的位置。
- 可视化染色体上的标记分布,用于遗传图构建和基因组比较。
输入数据格式
MG2C_v2.1 的输入数据通常是一个包含染色体编号、起始位置、结束位置和注释信息的表格。例如:
Chromosome | Start | End | Gene/Feature | Type |
---|---|---|---|---|
Chr1 | 100 | 200 | GeneA | Gene |
Chr1 | 300 | 400 | QTL1 | QTL |
Chr2 | 150 | 250 | GeneB | Gene |
优点
- 易用性: 提供基于网页的用户界面,无需编程经验。
- 灵活性: 可根据研究需求定制染色体图。
- 高质量输出: 生成的图像适合用于科研论文和演示。
官方使用
工具1,在线
http://mg2c.iask.in/mg2c_v2.1/index_cn.html
MG2C_v2.1 可通过其官方网站访问并操作:MG2C_v2.1
2. MapChart
MapChart 是一种更通用的可视化工具,用于创建遗传或物理作图。它可以生成基因组遗传图(linkage maps)、染色体图和 QTL 分布图。
功能特点
- 遗传图绘制: 支持基于遗传连锁数据生成遗传图,展示基因标记的顺序和位置。
- 染色体可视化: 绘制染色体和标记分布图,用于显示基因组中重要特征的位置。
- QTL 分布图: 显示 QTL 在染色体上的分布,支持多个 QTL 映射。
- 跨染色体同源性绘图: 显示基因或标记在不同染色体或物种之间的同源关系。
使用场景
- 遗传连锁图构建与可视化。
- 比较不同物种或基因组之间的染色体结构。
- 显示重要标记或基因的分布。
输入数据格式
MapChart 支持简单的文本格式(.txt
),通常包括染色体编号、基因位置和标记信息。例如:
group Chr1
GeneA 10
GeneB 20
GeneC 30
group Chr2
GeneD 15
GeneE 25
GeneF 35
优点
- 灵活性: 用户可以手动调整染色体和标记的布局。
- 跨物种比较: 支持多个基因组和染色体的并行可视化。
- 轻量级工具: 软件安装和运行简单,适合各种硬件平台。
官方网站
工具2,本地
MapChart
安装包官网有
https://www.wur.nl/en/show/mapchart.htm
可下载 MapChart 并了解更多信息:MapChart
MG2C_v2.1 和 MapChart 的对比
特性 | MG2C_v2.1 | MapChart |
---|---|---|
主要用途 | 染色体标记和基因分布图 | 遗传图谱和 QTL 可视化 |
用户界面 | 基于网页,无需安装 | 桌面软件,需要安装 |
数据格式 | CSV/TXT,基于染色体位置 | TXT,基于遗传标记位置 |
输出格式 | SVG、PNG | PDF、PNG、JPG |
灵活性 | 高,支持丰富的样式和标注 | 中等,适用于标准遗传或物理作图 |
适合场景 | 基因组标记分布、染色体比较 | 遗传图谱构建、多基因组同源性比较 |
3. RIdeogram
RIdeogram 是一个 R 包,用于高效、灵活地可视化基因组信息(如基因分布、基因密度、QTL 分布、SNP 密度等),通过生成高质量的染色体图。该包能够将染色体数据转化为直观的染色体带图,非常适合用于基因组研究、进化分析和基因定位的结果展示。
功能特点
-
染色体可视化:
- 绘制染色体的比例尺(以物理位置为单位)。
- 在染色体上展示基因分布、QTL 分布、SNP 密度等。
-
灵活的数据输入:
- 支持任意染色体数量和任意比例的基因组范围。
- 支持绘制注释信息,例如基因、标记位置。
-
高质量输出:
- 输出 SVG 矢量图,适合科研论文和演示使用。
-
直观的基因组信息展示:
- 显示基因组特征分布(如基因密度或结构变异)。
- 可视化染色体上的热点区域、标记、拷贝数变异(CNV)等。
主要功能
- 绘制染色体图: 将染色体编号、长度和标注信息转化为可视化图表。
- 显示基因组分布: 绘制基因、SNP、QTL 或其他分布特征的密度图。
- 多染色体展示: 支持多染色体基因组的全局可视化。
安装
可以通过 CRAN 或 GitHub 安装 RIdeogram
:
从 CRAN 安装
install.packages("RIdeogram")
从 GitHub 安装(最新版本)
如果需要最新版:
install.packages("remotes")
remotes::install_github("Vegpl/RIdeogram")
install.packages("devtools")
#devtools::install_github('TickingClock1992/RIdeogram')
输入数据格式
RIdeogram
支持两种主要的数据输入类型:染色体数据 和 注释数据。
1. 染色体数据
定义染色体的长度和编号,格式如下:
Chr | Start | End |
---|---|---|
Chr1 | 0 | 100000 |
Chr2 | 0 | 200000 |
Chr3 | 0 | 150000 |
2. 注释数据
注释数据定义在染色体上的功能元素(如基因、QTL、SNP),格式如下:
Chr | Start | End | Name | Color |
---|---|---|---|---|
Chr1 | 10000 | 20000 | Gene1 | red |
Chr2 | 50000 | 70000 | QTL1 | blue |
使用方法
1. 绘制基础染色体图
加载包并使用内置数据绘制:
library(RIdeogram) # 内置数据示例
> data(human_karyotype, package="RIdeogram")
> head(human_karyotype)
data(gene_density, package="RIdeogram")
head(gene_density)
# 绘制染色体图
ideogram(karyotype, ideogram, output = "chromosome.svg")
2. 使用自定义数据
通过自定义染色体和注释数据绘制:
# 染色体数据 karyotype <- data.frame( Chr = c("Chr1", "Chr2"), Start = c(0, 0), End = c(100000, 150000) ) # 注释数据 annotation <- data.frame( Chr = c("Chr1", "Chr1", "Chr2"), Start = c(10000, 30000, 80000), End = c(20000, 40000, 100000), Name = c("Gene1", "Gene2", "QTL1"), Color = c("red", "blue", "green") ) # 绘制染色体图 ideogram(karyotype, annotation, output = "custom_chromosome.svg")
3. 输出高质量 SVG 图
生成的 chromosome.svg
文件可以直接在支持矢量图的软件中(如 Adobe Illustrator 或 Inkscape)进行进一步编辑。
比较而言,小白用在线的作图放附件就好。