Sim-to-Real Transfer of Robotic Assembly with Visual Inputs Using CycleGAN and Force Control

文章探讨了深度强化学习在机器人操作中的挑战,特别是样本效率和安全问题。提出了一种结合CycleGAN和力控制转移的域适应方法,以解决模拟与现实之间的差距,从而成功地将训练从模拟环境转移到真实的钉孔组装任务。
摘要由CSDN通过智能技术生成

最近,深度强化学习 (RL) 在机器人操作应用中显示出一些令人印象深刻的成功。然而,由于样本效率和安全性问题,现实世界中的训练机器人并非易事。提出了 Simto-real 传输来解决上述问题,但引入了一个新的问题,称为现实差距。在这项工作中,我们引入了一个用于基于视觉的组装任务的模拟到真实的学习框架,并通过使用单个相机的输入在模拟环境中进行训练来解决上述问题。提出了一种基于周期一致生成对抗网络(CycleGAN)和力控制转移方法的域适应方法来弥合现实差距。我们证明了在模拟环境中训练的所提出的框架可以成功地转移到真正的钉孔设置中
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值