Sim-to-Real Transfer of Robotic Assembly with Visual Inputs Using CycleGAN and Force Control

文章探讨了深度强化学习在机器人操作中的挑战,特别是样本效率和安全问题。提出了一种结合CycleGAN和力控制转移的域适应方法,以解决模拟与现实之间的差距,从而成功地将训练从模拟环境转移到真实的钉孔组装任务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近,深度强化学习 (RL) 在机器人操作应用中显示出一些令人印象深刻的成功。然而,由于样本效率和安全性问题,现实世界中的训练机器人并非易事。提出了 Simto-real 传输来解决上述问题,但引入了一个新的问题,称为现实差距。在这项工作中,我们引入了一个用于基于视觉的组装任务的模拟到真实的学习框架,并通过使用单个相机的输入在模拟环境中进行训练来解决上述问题。提出了一种基于周期一致生成对抗网络(CycleGAN)和力控制转移方法的域适应方法来弥合现实差距。我们证明了在模拟环境中训练的所提出的框架可以成功地转移到真正的钉孔设置中
在这里插入图片描述

以下是一些Sim2Real挑战赛的学习资料: 1. Sim-to-Real Reinforcement Learning for Robotics: A Reality Gap is a challenge in robotics where models trained in simulation often fail to perform well in the real world. This paper examines the problem and proposes a sim-to-real approach to reinforcement learning for robotics. 2. Sim2Real Viewpoint Invariant Visual Servoing by Recurrent Control: This paper proposes a view-invariant visual servoing technique that can generalize well from simulated to real-world environments. 3. Sim-to-Real Transfer of Robotic Control with Dynamics Randomization: This paper introduces a method of training robots in simulation using randomized dynamics and then transferring the learned control policies to the real world. 4. Sim-to-Real Transfer for Deep Reinforcement Learning with Safe Exploration: This paper proposes a method for safe exploration in Sim2Real transfer for deep reinforcement learning. 5. Sim2Real View-Invariant Visual Servoing by Combining Simulation and Deep Learning: This paper proposes a view-invariant visual servoing technique that combines simulation and deep learning to achieve robustness to viewpoint changes. 6. Sim2Real Transfer for Robotic Manipulation: A Survey: This paper provides a comprehensive survey of the existing literature on Sim2Real transfer for robotic manipulation. 7. OpenAI Robotics: Sim2Real Transfer: This blog post by OpenAI provides an overview of Sim2Real transfer for robotics and highlights some of the challenges and opportunities in the field. 8. NVIDIA Research: Sim-to-Real Transfer Learning for Robotics: This video by NVIDIA Research provides an overview of Sim2Real transfer learning for robotics and showcases some of the recent advancements in the field. 9. Sim-to-Real Transfer of Robotic Control with Deep Reinforcement Learning: This paper proposes a method for Sim2Real transfer of robotic control using deep reinforcement learning and demonstrates its effectiveness on a real-world robotic arm. 10. Sim-to-Real Transfer of Control Policies for Robotics using Adversarial Domain Adaptation: This paper proposes a method for Sim2Real transfer of control policies for robotics using adversarial domain adaptation and demonstrates its effectiveness on a real-world robotic arm.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值