【直播讲座笔记】CAIRDC会议:多信息融合SLAM及应用(未整理版)

本文探讨了AVP(自主代客泊车)与HPP(高度自动化泊车)的技术现状,纵目科技在APA(自动泊车辅助)领域的量产进展,以及SLAM(同步定位与建图)技术在低速环境中的应用。文章分析了激光雷达、视觉系统、毫米波雷达等传感器在建图与感知中的角色,讨论了SLAM技术在定位、感知、规划与控制中的关键作用。
摘要由CSDN通过智能技术生成

AVP/HPP L3L4级别间的停车场低速(研发现状)
生产工厂在厦门
纵目科技发展历程
APA(量产)自动泊车辅助,路径规划,定位,控制

无人驾驶落地,show demo 可以,但还要积累。在数据集里面可能超过人类但是还有
激光雷达太贵

AVP,低速有足够的反应时间,潜在市场,一键接驾

HD map,高精度地图,事先用激光雷达建图

HPP(L3)定制化的AVP,自动建图,单车单用

Autonomous Problem
机器人导航回答我在哪里的问题,我的目标(Goal)在哪里?
localization
perception
planning
motion control
感知信息与已知的地图匹配
我们用SLAM技术来定位
局部地图上做局部运动规划
控制轨迹行走,前馈反馈控制
状态估计是最重要的

定位全局定位(绑架问题),位置跟踪
地图从哪里来?用SLAM,建图包括测绘机器人,SLAM还可以做测绘,测量一堆煤的质量

MAV(mirco aerial vehicle)6D.O.F flight robot
以无人机为例,来介绍多传感器融合

SLAM : AVP/HPP
Why mapping is important?
几何信息,语义信息,

用激光雷达来建图,用视觉来感知,像素点的深度信息,视觉系统做场景识别,
速度和车载的MU

粒子滤波,离散化采样,精度
粒子滤波的鲁棒性,降噪性,直接法

单相机容易遮当,建图失败

答疑环节

人为注入HD地图,交通信息,可以使矢量图
AP地图环境改变了,SLAM需要对这些信息处理
毫米波雷达SLAM暂时不多,视觉和毫米波要一起
我们需要用建图,夏天建图冬天能用
无人机建图,在线处理状态估计对飞机控制,都会有立体视觉,
相关数据SLAM的书籍,卡尔曼滤波器,海外课件,概率机器人
初始位址影响,视觉里程计,收敛域,粒子滤波
视觉特征,语义特征比较稳定,几何特征
相对定位,特征静态物体,
1到2个SLAM开源框架
双目SLAM点云基线,图像分辨率,合理一定范围内的,深度错误是不能用远景定位的。

毫米波雷达做配准,雨雪也可以使用,单价百,多普勒效应可以测速
激光雷达,单价万

不同的相机如何做标定
1.棋盘格
2.跑SLAM

处理器,建图的数据量比较大,定位小

信息矩阵,有构建语义地图的开源么?无

纵目科技

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

肥鼠路易

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值